
Submitted for publication in the 
International Journal of Computational Civil and Structural Engineering 

SCATTERING OF ELASTIC WAVES IN DISPERSED 

COMPOSITES 

Sergey V.KUZNETSOV† and Irini DJERAN-MAIGRE‡  

†Institute for Problems in Mechanics 

Prosp. Vernadskogo 101, Moscow 119526, Russia 

e-mail: kuzn-sergey@yandex.ru  

‡INSA de Lyon, URGC  

34 Avenue des Arts, 69621 Villeurbanne Cedex, France 

e-mail: Irini.Djeran-Maigre@insa-lyon.fr 

 

 

Key words: elastic waves, anisotropy, scattering, dispersed composite, porous composite 

Abstract 

A deterministic model is developed for analyzing the scattering cross-sections, speed and 

energy variation of the plane elastic waves propagating in porous media or dispersed 

composites. The model is based on the two-scale asymptotic analysis combined with the 

periodic boundary integral equation method. 
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1 Introduction 

Herein we develop a theoretical model for analyzing energy variation and scattering 

cross-sections for elastic waves propagating in a heterogeneous medium containing the 

dispersed inclusions or voids. The considered porous medium or dispersed composite is 

modeled by a deterministic scheme based on a regular space lattice with inclusions located at 

the corresponding nodes. Media with inclusions can have different kinds of lattices, each 

having inclusions of specific geometry and orientation placed at the corresponding nodes.  

 It is assumed that both the medium and the inclusions are elastic and anisotropic, and 

that no restrictions on the specific kind of anisotropy is imposed. The other assumption 

concerns the displacement fields which are supposed to be infinitesimal, so equations of the 

linear theory of elasticity can be applied.  

 The main problem for a medium with uniformly distributed inclusions is in its 

effective characteristic determination; in the case of elasticity it means determination of the 

effective (or averaged) Young’s and shear moduli, Poisson’s ratios etc. Along with this main 

problem several others can be solved in parallel, namely (i) determining level of the 

microstructural stresses in matrix material, these are highly oscillating stresses which may 

have high magnitude and can initiate volume fracture; (ii) determining scattering cross 

sections by inclusions, this is related to the ratio of the energy scattered by these inclusions to 

the energy of the incident wave. The latter problem is interesting due its direct connection to 

the non-destructive testing of heterogeneous materials with the discrete inhomogeneities. 

 The closest solutions in mechanics of heterogeneous media with inclusions can be 

obtained by application of the two-scale asymptotic analysis [1-3]. In this method it is 

assumed that two fields exist: (i) the global field which is described by “slow” variables; and, 

(ii) a local field, having high oscillations, which is described by “fast” variables. Application 

of the two-scale asymptotic analysis to the problem stated above will be considered in more 

detail later on. 

 In the two-scale asymptotic method the effective elasticity tensor is generally 

represented by 
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where 0C  is the effective elasticity tensor, pf  is the volume fracture of the p-th component, 

pC  is the elasticity tensor of the p -th component, N  is the total number of different 

components of the heterogeneous medium, and K  is a correcting tensor, or “corrector”. It is 

clear from (1.1), that the main difficulty in determination of the effective elasticity tensor is in 

finding the corrector. 

 

 Remark. It is interesting to note that Eq. (1.1) covers almost all the existing 

methods of homogenization by choosing different expressions for the 

corrector:  

 a) Thus, if K = 0  the well known Voigt’s homogenization is obtained.  

 b) Taking  

 ( )1 1

1

N

p p p p
p

f f − −

=
= − +∑K C C  (1.2) 

and assuming that for any p tensor Cp  is invertible along with ( )1
p pf −C , the 

Reuss homogenization for the elasticity tensor comes out (assumption that Cp  

is invertible for any p  is not valid for media with pores; in this case the Reuss 

homogenization produces wrong values for the homogenized elasticity tensor).  

 

 Determination of the corrector in the two-scale asymptotic method demands the 

solution of the cell problem, which in turn consists of (i) setting up a boundary-value problem 

on the internal boundaries between inclusion(s) and the matrix material in a cell; and, (ii) 

formulating a periodic boundary-value problem on the outer boundary of a cell. The latter one 

is non-classical in the sense that it is formulated on the boundary which, due to periodicity, 

must have angular points and edges.  
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 Along with FEM and finite differences methods, the following other methods for 

obtaining the solution to the cell problem are known. In [4 - 6], methods based on the 

Eshelby’s transformation strain were applied to analyses of isotropic media with ellipsoidal 

inclusions. The advantage of these methods resides in their principle possibility to analyze 

media with anisotropic components, while from the computational point of view these are not 

very convenient since they lead to the three-dimensional integral equations with weakly 

singular kernels. 

 In [7, 8], media with isotropic components were studied by applying a method based 

on the periodic fundamental solution for isotropic medium, which originally was constructed 

in [9]. Because of multipolar expansions used for the solution of the inner boundary value 

problem this method is confined to inclusions of spherical form. A similar approach was also 

used in the case of isotropic composites, but it was based on the Galerkin technique for 

solution of the inner boundary value problem [10]. 

 Periodic fundamental solutions for media with arbitrary anisotropy were developed in 

[11], In combination with the Boundary Integral Equation Method (BIEM) these fundamental 

solutions were applied to the cell problem for composites with anisotropic inhomogeneities 

and porous media in [12, 13], analysis of microstructural stresses in the matrix material was 

considered in [14]. Problems of wave scattering by pores were studied in [15] by application 

of the same method. Some of obvious advantages of this method are due to potential 

possibility to reduce the solution of the inner boundary-value problem to a summation of the 

rapidly convergent series, while periodic boundary conditions on the outer boundary are 

satisfied automatically due to periodicity of the fundamental solution.  

 Scattering of elastic waves in the dispersed composites and porous media are generally 

studied at the long wave assumption [15-20], this means that the wave length surpasses 

considerably the lattice period. Some an additional assumption of the constancy of the wave 

speed in a lattice cell is made [21, 22], this is known as the Rayleigh approximation. Non-

linear problems related to the analysis of wave scattering by the inclusions or pores are treated 

in [23-25]. 

 The following analysis is targeted to obtaining scattering cross sections for the plane 

harmonic wave scattered by periodically distributed inclusions or voids in an anisotropic 
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composite with the arbitrary elastic anisotropy on the bases of the two-scale asymptotic 

analysis; see also [28]. 

2 Basic notations 

A homogeneous elastic anisotropic medium is considered. The equations of equilibrium 

can be written in the form: 

 x( ) div 0x x∂ = − ⋅⋅∇ =A u C u , (2.1) 

where u  is a displacement field. It is assumed that the tensor of elasticity satisfies the 

condition of positive definiteness, which is generally adopted for problems of mechanics. 

 Applying the Fourier transform 

 ^ 3( ) ( )exp(2 ) ,f f i dx Rξ = π ⋅ξ ξ∈∫ x x  (2.2) 

to Eqs. (2.1) gives the following symbol of the operator A : 

 ^ 2( ) (2 )ξ = π ξ⋅ ⋅ ξA C . (2.3) 

 From the definition of the fundamental solution E , the following formula for the 

corresponding symbol can be obtained: 

 ^ ^ 1( ) ( )−ξ = ξE A . (2.4) 

The expression (2.4) shows that symbol ^E  is also strongly elliptic, positively homogeneous 

of degree -2 with respect to ξ , and analytical everywhere in 3 \ 0R . 

 

 Remark. The Fourier inversion of the expression (2.4) and 

procedures for construction of the fundamental solution, are discussed in 

[26, 27].  
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3 Spatially periodic fundamental solution 

Consider a homogeneous anisotropic medium, loaded by periodically distributed force 

singularities, located in nodes m  of a spatial lattice Λ .  

 Let , ( 1,2,3)i i =a  be linearly independent vectors of the main periods of the lattice, 

so that each of the nodes can be represented in the form:  

 i i
i

m=∑m a , (3.1) 

where im Z∈  are the integer-valued coordinates of the node m  in the basis ( )ia . The 

adjoint basis ( *)ia  is introduced in such a manner that  *i im⋅ =a m . The lattice 

corresponding to the adjoint basis is denoted by *Λ . 

 Now, periodic delta-function corresponding to the singularities disposed at the nodes 

of the lattice Λ  has the form: 

 1

* *
( ) exp( 2 *)p QV i−

∈Λ
δ = − π ⋅∑

m
x x m , (3.2) 

where QV  is the volume of the fundamental region (cell) Q . Expression (3.2) defines the 

periodic delta-function uniquely.  

 Substitution of the periodic fundamental solution pE  in Eq. (2.1) yields 

 ( ) ( ) ( )p p∂ = δxA E x x I , (3.3) 

where I  is the identity matrix. Looking for pE  also in the form of harmonic series and 

taking into account representation (3.2), it is possible to get: 

 
0

1

* *
( ) ^ ( *) exp( 2 *)p QV i−

∈Λ
= − π ⋅∑

m
E x E m x m , (3.4) 
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where 0 *Λ  is the adjoint lattice without the zero node. It should be noted that expression 

(3.4) defines a periodic fundamental solution up to an additive (tensorial) constant. 

 

 Lemma 1. The series on the right side of Eq. (3.4) is convergent in the 1L -

topology, defining the fundamental solution of the class 1 3 3( , )L Q R R⊗ , 

where 1L  is a class of integrable in Q functions with the zero mean value. 

 

 Proof of the lemma can be found in [11]. 

4 Effective elasticity tensor and scattering cross section 

For clarity and simplicity it will be assumed that the considered medium has only one kind of 

uniformly distributed inhomogeneities placed in nodes of spatial lattice Λ . The region 

occupied by an individual inhomogeneity in a cell Q  is denoted by Ω . 

 The two-scale asymptotic analyses being applied to such a medium produces the 

following expression for the corrector [12]: 

 1 ( ( ))QV dY−

∂Ω

= − ⋅⋅ ν ⊗∫ YK C H Y , (4.1) 

where Y  are the “fast” variables, H  is the third-order tensorial field, being a solution of the 

following boundary value problem: 

 

( ) ( ) 0, \

( , ) ( )

Y

Y Y Y

Q

∂Ω

∂ = ∈ Ω

ν ∂ = −ν ⋅

A H Y Y

T H Y C
. (4.2) 

In Eqs. (4.1) and (4.2) Yν  represents the field of external unit normal to the boundary ∂Ω , 

and the elasticity tensor Ω  is defined by: 
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 2 1= −C C C , (4.3) 

where 2C  is referred to the matrix material, and 1C  to inclusions. Strong ellipticity of the 

tensor C  is also assumed.  

 

 Lemma 2. Under assumptions stated above, boundary-value problem (3.9) 

admits the unique solution. 

 

 Proof of the lemma can be found in [11, 12]. 

 

Remark. Supposition that the tensor C in the left-hand side of Eq. (4.3) is 

not strong elliptic, violates proof of Lemma 2. 

 

 Now, the solution of the boundary value problem (4.2) for the traction field can be 

constructed by applying boundary integral equation method, giving the following 

representation for the desired solution [12]: 

 ( )1
2 ( ) c′ ′+ = ∈∂ΩI S H Y H Y , (4.4) 

where cH  is a constant tensor, and S  is a singular integral operator resulting from a 

restriction of the double-layer potential on the surface ∂Ω . Some of the relevant properties of 

operator S  are discussed in [13]. 

 Substitution of Eq. (3.4) for periodic fundamental solutions in the expression for the 

operator S allows to obtain a lower (on energy) bound for the corrector; i.e. 

 ( )
0

22 2

* *
8 ^ ( *) * ^ ( *) *l QV −

Ω
∈Λ

= − π χ ⋅⋅ ⊗ ⊗ ⋅⋅∑
m

K m C m E m m C , (4.5) 

where ^Ωχ  is the Fourier image of the characteristic function of the region Ω . An 

expression for the upper bound can be obtained similarly [12, 13]. 
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 Theorem. Series appearing on the right side of Eq. (4.5) is absolutely 

convergent, provided Ω  is a proper open region in Q . 

 

Proof of the theorem can be found in [12, 13] 

 

Remark. Proof of convergence of the series analogous to (4.5) for very thin 

inclusions or cracks, is to be studied separately, as in this case a special 

asymptotic analysis is needed. 

 

 As was shown in [13, 14], the energy level oscW  of the microstructural highly 

oscillating stresses for the case of porous medium is defined by: 

 1 0 02oscW = ε ⋅⋅ ⋅ ⋅εK , (4.6) 

where 0ε  represents the uniform deformation field, and K  is the corrector obtained by Eq. 

(4.5). 

 Similarly, having applied terminology used in quantum mechanics, the scattering 

cross-section S  for the porous medium can be obtained by the following expression [15]: 

 1 0 0

0 0
(1 )S f − ε ⋅⋅ ⋅ ⋅ε

= −
ε ⋅⋅ ⋅ ⋅ε

K
C

, (4.7) 

where f  is the porous ratio and C  is the elasticity tensor for the matrix material, in 

expression (4.7) the homogeneous deformation field 0ε  corresponds to the amplitude 

deformation on the wave front:  

 ( )0
1
2

= ⊗ + ⊗n a a nε , (4.8) 
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In (4.8) a  is the polarization vector of the bulk wave and n  is the unit vector normal to the 
plane wave front. Polarization vector a  in the right-hand side of (4.8) should satisfy the 
propagation condition 

 ( ) 2c⋅ ⋅ ⋅ = ρn C n a a , (4.9) 

where c  is the speed of the corresponding bulk wave, and ρ  is the density. 
 

 Remark. In [12-15] some examples for the corrector obtained by Eq. (4.5), 

and corresponding to inclusions or voids of some canonical shapes, are 

presented.  

 

 As is seen from Eq. (4.7), the scattering cross-section heavily depends upon the 

corrector K  (and the applied homogenization technique). For example, Voigt’s 

homogenization (see Remark in Sec. 1) necessary leads to absence of any scattering 

irrespective of nature of a dispersed composite or porous media, while Reuss homogenization 

leads to infinite scattering cross-section for any porous medium. This underlines the fact of 

necessity to chose the closest technique for evaluating the corrector. 

 

 Acknowledgements. The authors thank INSA de Lyon and Erasmus Mundus program 

2005-2006, the RFBR Grant 04-01-00781, and the Russian Academy of Sciences OEMMPU 

Program 12 for financial support. 



 
 

11

 

References 

[1] N. S. Bakhvalov, Homogenized characteristics of bodies with periodic structure (in 

Russian), Dokl. AN USSR, 218, (1974), 1046–1048. 

[2] A. Bensoussan, J. L. Lions, and G. Papanicolaou, Asymptotic analysis for periodic 

structures, North-Holland Publ., Amsterdam (1978). 

[3] E. Sanchez-Palencia, Homogenization method for the study of composite media, 

Asymptotic Analysis II, (1983), 192-214. 

[4] S. Nemat-Nasser, T. Iwakuma, M. Hejazi, On composite with periodic microstructure,  

Mech. Mater., 1, (1982), 239–267. 

[5] S. Nemat-Nasser, M. Taya, On effective moduli of an elastic body containing 

periodically distributed voids, Quart. Appl. Math., 39, (1981), 43–59. 

[6] S. Nemat-Nasser, M. Taya, On effective moduli of an elastic body containing 

periodically distributed voids: comments and corrections, Quart. Appl. Math., 43, 

(1985), 187-188. 

[7] A. S. Sangani, A. Acrivos, Slow flow through a periodic array of spheres, Int. J. 

Multiphase Flow, 8, (1982), 343 -360. 

[8] A. S. Sangani, W. Lu, Elastic coefficients of composites containing spherical inclusions 

in a periodic array, J. Mech. Phys. Solids, 35, (1987), 1-21. 

[9] H. Hasimoto, On the periodic fundamental solutions of the Stokes equations and their 

application to viscous flow past a cubic array of spheres, J. Fluid Mech., 5, (1959), 317-

328. 

[10] K. C. Nunan, J. B. Keller, Effective elasticity tensor of a periodic composite, J. Mech. 

Phys. Solids, 32, (1984), 259-280. 

[11] S. V. Kuznetsov, Periodic fundamental solutions for anisotropic media (in Russian), 

Izv. RAN. MTT., (1991), 4, 99-104. 



 
 

12

[12] S. V. Kuznetsov, Effective elasticity tensors for dispersed composites (in Russian), 

Prikl. Matem. Mech., 57, (1993), 103-109. 

[13] S. V. Kuznetsov, Porous media with internal pressure (in Russian), Izv. RAN. MTT., 

(1993), 6,  22-28. 

[14] S. V. Kuznetsov, Microstructural stresses in porous media (in Russian), Prikl. Mech., 

27, (1991), 23-28. 

[15] S. V. Kuznetsov, Wave scattering in porous media (in Russian), Izv. RAN. MTT., 

(1995), 3, 81-86. 

[16] S. K. Bose, A. K. Mal, Longitudinal shear waves in a fiber-reinforced composite, Int. J. 

Solids Struct., 9, (1979), p.1075-1085. 

[17] S. K. Datta, Diffraction of plane elastic waves by ellipsoidal inclusions, J. Acoust. Soc. 

Am., 61, (1977), 1432-1437. 

[18] F. J. Sadina, J. R. Willis, A simple self-consistent analysis of wave propagation in 

particulate composites, Wave Motion, 10, (1988), 127-142. 

[19] M. Piau, Attenuation of a plane compressional wave by a random distribution in thin 

circular cracks, Int. J. Eng. Sci., 17, (1979), 151-167. 

[20] J. R. Willis, A polarization approach to the scattering of elastic waves – II. Multiple 

scattering from inclusions, J. Mech. Phys. Solids, 28, (1980), 307-327. 

[21] J. E. Gubernatis, Long-wave approximations for the scattering of elastic waves from 

flaws with applications to ellipsoidal voids and inclusions, J. Appl. Phys., 50, (1979), 

4046-4058. 

[22] J. E. Gubernatis, E. Domani, J. A. Krumhasl, Formal aspects of the theory of the 

scattering of ultrasound by flaws in elastic materials, J. Appl. Phys., 48, (1977), 2804-

2811. 

[23] V. L. Berdichevskij, Spatial homogeneous of periodic structures (in Russian), Dokl. AN 

SSSR, 222, (1975), 565-567. 



 
 

13

[24] P. C. Waterman, Matrix theory of elastic wave scattering, J. Acoust. Soc. Am., 60, 

(1976), 567-580. 

[25] J. J. Ruschitskij, I. A. Ostrakov, Distortion of plane harmonic wave in a composite 

material, Dokl. AN USSR, (1991), 11, 51-54. 

[26] S. V. Kuznetsov, Fundamental solutions for Lamé’s equations in anisotropic elasticity 

(in Russian), Izv. RAN. MTT., (1989), 4, 50-54. 

[27] S. V. Kuznetsov, Direct Boundary Integral equation Method in the Theory of Elasticity, 

Quart. Appl. Math., 53, (1995), 1-8. 

[28] S. V. Kuznetsov, I. Djeran-Maigre, Homogenized Poisson’s ratio of porous media, Int. 

J. Comp. Civil & Struct. Eng., 1, (2005), 59-64. 

 


