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Solitary surface acoustic waves 
 
 
 
 1. The main target and objectives. The main target of the research that has been 

carried out at LGCIE INSA de Lyon for several years is devoted to constructing a mathematical 

model for the soliton-like surface acoustic waves (SAW) traveling in layered anisotropic media. 

These newly observed waves play a very important role in different areas of physical nature, and 

technology: from soliton-like seismic waves to SAW in nanoscale materials.  

 The geotechnical group in LGCIE has vast and recognized experience in soil 

mechanics, and the proposed research on soliton-like waves is in the course of these studies, as 

in future it is foreseen to integrate the developed mathematical model for soliton-like waves with 

the porous-mechanical models studied in LGCIE.  

 

 2. Basic concepts. Solitons, or by the original terminology waves of translation, were 

for the first time observed and described in [1] as a special kind of hydrodynamic waves that can 

arise and propagate in narrow channels. These hydrodynamic solitons satisfy the following 

conditions:  

(i) These are the solitary waves, resembling propagation of the wave front of a shock wave;  

(ii) These waves can propagate without considerable attenuation;  

(iii) They do not change their form;  

(iv) They propagate without diminution of speed (see, [2]).  

 It was shown later on, that motion of these waves is described by a non-linear Korteveg 

– de Vries (KdV) differential equation [3 – 5].  

 

 3. Studies of solitary waves in solids. In the following review we analyze solitary 

surface acoustic waves (SAW) propagating in elastic plates and rods at vanishing frequency 

0ω→ , or in terms of the wave number r , at 0r → . The vanishing frequency SAW satisfy 

conditions (i) – (iv), and thus, by their properties, these waves resemble solitons in 
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hydrodynamics. But in contrast to the genuine solitons, solitary waves are described by a linear 

vectorial differential equation, known as the Christoffel equation for Lamb waves.  

 Studies of the vanishing frequency solitary waves in plates with the finite phase speed 

have quite a long history. Presumably, the first asymptotic analysis of these waves propagating 

in isotropic plates was performed in [6], where an analytical expression for the phase speed of 

the solitary Lamb wave was obtained. In the course of analytical and numerical studies the 

limiting low frequency Lamb waves were also analyzed in [7 – 16]. However, polarization of 

these waves was not obtained. It should also be noted that for anisotropic (monoclinic) plates 

neither analytical expressions for the limiting wave speed sc  at 0ω→ , nor polarization of the 

limiting wave, were obtained.  

 In the framework of the linear differential equations derived by Pochhammer [17] and 

Chree [18], the lower mode Pochhammer – Chree longitudinal and torsional waves propagating 

in isotropic circular cylinders at low and vanishing frequency, and thus resembling the solitons, 

were analyzed in [19 – 22].  

 The vanishing frequency waves in a circular cylinder were also studied in [23 – 25], as 

the solutions of a nonlinear differential equation similar to the KdV equation.  

 Analytical and numerical data obtained in [6 – 16, 19 – 22] reveal that in the vicinity of 

the limiting phase speed sc  at which the linear solitary waves propagate, the corresponding 

dispersion dependence ( )c ω  satisfies a condition  

 

 ( ) ( ), 0n
sc c Oω − = ω ω→ + , (1) 

 

where ( )c ω  is the phase speed considered as a function of frequency; and 0n >  is some positive 

number. However, numerical analyses in [19 – 22] did not allow one to define the exponent n .  

 The recent asymptotic analysis undertaken in LGCIE INSA de Lyon, allowed us to find 

both exponent n  and obtain the limiting speed sc  value for the SH waves propagating in a two-

layered plate; see [35, 36]. Our future studies are targeted to developing an asymptotic expansion 

method similar to one developed for the SH wave analysis, for obtaining the limiting wave speed 

and polarization of the solitary Lamb waves propagating in the multilayered plates.  
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 4. Importance of studies on propagation of solitary waves in solids. Low or 

vanishing frequencies of the surface acoustic waves (SAW) traveling with the phase speed 

satisfying condition (1), need in a very small amount of energy for their excitation. Indeed, the 

specific kinetic energy is determined by the following expression:  

 

 2 2 21 1
2 2kinE ≡ ρ = ρ ωu m , (2) 

 

where m  is the wave amplitude (possibly varying along depth of a layer or a halfspace). The 

right-hand side of (2) ensures that at the finite values of the amplitudes and at 0ω→ , the 

specific kinetic energy vanishes. It can be shown that the specific potential energy is also 

proportional to the square of amplitude and frequency, thus, vanishing at 0ω→ , too.  

 Importance of these waves is also underlined by the fact that they resemble propagation 

of the wave front (WF) in a layer (see [26, Ch.V, §1] for the WF in terms of Hörmander’s 

definition and [27, Ch.IV, §4.5] for the propagating WF in terms of mechanical applications). 

Thus, the limiting speeds sc  correspond to propagation of the wave fronts formed by either SH 

or Lamb waves.  

 

 5. Methods of analysis. Following pioneering Lamb work [28], the displacement field 

of any SAW traveling in elastic layer can be represented by  

 

 
6

( )

1
( , ) pir x ir ct

p p
p

t C e e′γ ⋅ −

=

⎛ ⎞
= ⎜ ⎟
⎜ ⎟
⎝ ⎠
∑ n xu x m , (3) 

 

where u  is the displacement field, 3
p ∈m  are the unit amplitudes (polarizations). It is 

assumed that each vector pm  belongs to the sagittal plane. This plane is determined by the unit 

normal = ×w n ν , where n  is the unit normal to the wave front and ν  is the unit normal to the 

median plane of the layer. In representation (3) x′ ≡ ⋅ xν  is a coordinate along vector ν ; r  is 

the wave number; c  is the phase speed; t  is time, and pγ  are the Christoffel parameters 

obtained from equations of motion. In representation (3)  
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 ( )( , ) pir xp ir ct
pt e e′γ ⋅ −= n xu x m  (4) 

 

are partial waves. The unknown coefficients pC  in (3) are determined up to a multiplier by the 

traction-free boundary conditions: 

 

 : 0x h′ = ± ≡ ⋅ ⋅ ⋅∇ =xt C uν ν , (5) 

 

where C  is the fourth-order elasticity tensor (for isotropic medium tensor C  is determined by 

two independent constants); and 2h  the depth of the layer. Exponential multiplier ( )ir cte ⋅ −n x  in 

(3) and (4) stands for propagation of the plane wave front const⋅ =n x .  

 

 Remark. Representation (3) is valid in a case of the arbitrary anisotropic layer. In a 

case of isotropic layer, or a layer with monoclinic symmetry, representation (3) can be 

simplified by choosing the terminate value 4, instead of 6 at summation in (3). For SH and Love 

waves traveling in isotropic layers or layers with monoclinic symmetry, the corresponding 

terminate value in (3) is 2.  

 

 If a multilayered plate is considered, the solution is generally constructed by one of 

the following two methods: (i) the transfer matrix (TM) method, known also as Thomson – 

Haskell method due to its originators [30, 31]; and (ii) the global matrix (GM) method [32, 33].  

 The TM method is based on a sequential solution of the boundary-value problems on 

the interfaces and constructing the transfer matrices. A modification of this method suitable for 

asymptotic analyzing solitary waves propagating in the multilayered plates was developed 

recently by members of the research group in the LGCIE INSA de Lyon; see [34, 35]. The GM 

method is based on solving a system of the second-order equations with the piecewise-constant 

coefficients, resulting in constructing the special “global matrix”, while being well suited for 

numerical computations, the GM method appears to be less suitable for asymptotic studies.  

 And, concluding a review of the mathematical methods used for analyzing linear 

solitary waves in plates, we should note another method, known also as the “complex six-

dimensional formalism”. Actually, this term is referred to a group of several different techniques 
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of reducing the second-order differential equations of wave dynamics to a six-dimensional 

system of equations of the first order. In theoretical physics such a technique is called as the 

generalized Hamiltonian formalism. The members of the LGCIE INSA de Lyon team worked 

out a variant of the complex six-dimensional formalism that is ideally suited for asymptotic 

analysis of the solitary waves; see [35, 36].  

 

 6. Obtained theoretical results in 2005-2008 years. The main theoretical results in the 

solitary acoustic wave propagation gained by the team are:  

– Developing a variant of the complex six-dimensional formalism for analyses of the SAW 

propagating in both isotropic and anisotropic layers;  

– Formulating and proving theorem on existence of Love waves propagating in anisotropic 

layer in a contact with anisotropic substrate;  

– Developing an asymptotic method for studying propagation of the solitary SH and Love 

waves in layered anisotropic media with monoclinic symmetry;  

– Obtaining analytical expressions for the limiting SH and Love wave speeds at which the 

corresponding solitary waves propagate;  

 

 7. Anticipated theoretical results in 2009-2011 years. The main theoretical results 

that are planning to be obtained in the course of the theoretical studies are:  

– Performing preliminary analysis for proving a theorem of existence (or non-existence) for 

Rayleigh-Lamb waves propagating in anisotropic layer(s) in a contact with anisotropic 

substrate;  

– On the basis of the theorem of existence developing engineering solutions for creating 

wave barriers against Rayleigh-Lamb waves; 

– On the basis of previous studies, developing an asymptotic method for analyzing 

propagation of the solitary Lamb and Rayleigh-Lamb waves in layered anisotropic media 

with monoclinic symmetry;  

– Obtaining analytical expressions for the limiting Lamb and Rayleigh-Lamb wave speeds 

at which the corresponding solitary waves propagate;  
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