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Executive Summary 

 

 The proposed research is targeted to address the problems associated with 
characterizing the properties of nano-layers in multilayered plates commonly used for 
MEMS and other microelectronic devices.  In order to do this in a rapid, reliable, 
nondestructive fashion, it is necessary to solve the main problem on identification of 
physical properties and structure of anisotropic nano-layers in multilayered plates 
composed of layers having different physical properties and structure. For resolving this 
problem, the joint team is developing a combined theoretical and experimental technique 
based on propagation of guided SH- and Love waves, and capable of analyzing 
multilayered plates containing up to 20 nano-layers of different physical properties and 
structure.  

 

 In the course of the proposed research work the following theoretical and 
experimental problems should be analyzed and solved:  

• Propagation of guided SH-waves in a multilayerd plate composed of anisotropic 
layers with contrast physical properties and satisfying possibly asymmetric 
boundary conditions, which model real boundary conditions imposed on the 
outer surfaces. 

• Obtaining assessments and bounds of applicability of the continuum theory for 
analyzing wave propagation in nano-structures, by comparing with the 
molecular dynamic approaches.  

• Developing an adequate experimental technique for excitation, registration, and 
filtering guided SH-waves propagating in multilyared nano-structures. 

• Inverse problem on identification of physical properties and structure of a 
particular internal layer by analyzing the dispersion relations. 

 

 The main objectives of the proposed research flowing out directly from its title 
are as follows: 

• Developing the combined theoretical and experimental non-destructive 
technique exploiting guided SH-waves for analyzing properties of the internal 
nano-layers in multilayared plates. 

• Developing numerical algorithms capable of analyzing surface SH-waves 
propagating in stratified anisotropic media containing large number of nano-
layers. 

• Developing algorithms for solution of the inverse problems on identifying 
physical properties of an internal particular layer. 

 



 While principally oriented to addressing the characterization of microelectronic 
devices, the proposed research effort also has applications in several different areas of 
science and technology where nondestructive evaluation of material properties of 
multiple layers is needed: seismology, acoustical microscopy, composite manufacturing, 
biomechanics, etc.  Of particular importance in this regard is the ability to characterize 
the properties of very thin films as they are deposited.  Functional gradient materials 
(FGM) are being utilized with increasing frequency in practical applications. Micro-
electromechanical systems (MEMS) devices are often built up via multiplayer deposition. 
The methods under development in this research program are well suited for real-time 
on-line process control applications; principally through the use of laser based ultrasonic 
techniques as they are nondestructive, noncontact and minimally invasive. 

 

 Methods of analyses: 

• Propagation of surface SH-waves in a homogeneous layer with monoclinic 
elastic anisotropy will be studied using the six-dimensional complex formalism 
approach, allowing us to obtain both qualitative (structure and existence of the 
solutions, polarization of the surface waves, etc.), and quantitative (values for 
the phase and group speed, the dispersion relations, etc.) results. 

• Waves in the stratified media will be analyzed by the straightforward method 
combining the six-dimensional complex formalism for an individual layer, then 
formulating contact type boundary conditions on the interfaces, and resolving an 
eigenproblem for the specially constructed matrix (modified Transfer matrix 
method). 

• The inverse problem of identification of the material properties of a single layer 
in a multilayered plate will be studied with a variety of approaches including 
iterative methods such as Levenberg-Marquardt, simplex methods, and the use 
of genetic algorithms.  

 

The successful completion of this research effort will promote a better understanding 
nature of the surface waves and giving methods for predicting properties and structure of 
internal layers inaccessible by the direct measurements and lead to a variety of important 
materials characterization applications.  



Project Description 
 

 

1 Introduction 
 Growing demands in microelectronics and other areas of modern technology 
require the development of precise, nondestructive materials characterization techniques. 
Typically these methods are based  on  acoustics,  heat  conduction  or  electromagnetics  
( including optics and x-ray propagation ). The use of extremely high frequencies in 
acoustical measurements, permits the analysis of both the fine structure of a material and 
the presence of microscopic defects. Experimental acoustical analyses of multilayered 
plates composed by anisotropic layers on an anisotropic substrate has revealed that 
frequencies  of about 1 GHz are capable of analyzing physical properties and structure of 
the internal layers with the typical thickness 0.1-1 micron.  

 Generally, the acoustical measurements needed for material structure 
identification are the velocities and polarization of the propagating waves. These 
measurements allow us to plot the dispersion relations (velocities vs. frequency). Using 
an appropriate forward propagation model it is possible to predict the precise nature of 
these dispersion relationships given an initial estimate of the material 
properties/geometric features of interest.  Then, through the use of one of the iterative 
algorithms mentioned above, it is possible to perturb these property estimates in a 
systematic fashion to bring the predicted dispersion curves into good agreement with the 
experimentally measured quantities. Therefore, in order to exploit the obtained 
experimental data for the internal layer identification, a suitable wave propagation model 
must be developed in order to analyze propagation of the guided waves in laminated 
anisotropic media.  

 As will be shown further the existing theoretical methods on surface waves are 
mainly confined to either isotropic layers on an isotropic substrate with a relatively large 
number of layers (but, generally, not exceeding ten layers). With additional simplifying 
assumptions on structure of layers and the propagating waves or for materials with fewer 
layers (generally, 1-3 layers), some degree of material anisotropy may be introduced. 

 Meanwhile, the needs of the modern microelectronics industry demand a 
theoretical framework and numerical algorithms efficient enough to analyze plates 
containing up to 20  layers lying on an anisotropic substrate ( typically single crystal 
silicon). It is not out of place to note here that a similar problem arises in seismology as 
well. In this case the  frequencies are much lower and generally do not exceed 1KHz. 
Numerous existing theoretical and experimental works in seismological sciences have 
revealed the lack of a suitable methodology for studying this complex problem.  

 In this joint research effort, a team of investigators has been assembled to attack 
this problem both theoretically and experimentally. The main goal is to develop a sound 
theoretical framework for analysis of the guided acoustic waves in the multilayered 
anisotropic bodies containing up to ten layers with arbitrary elastic anisotropy. 



2 Literature Review 
 

 The following three main types of guided waves can propagate in a laminated 
plate lying on a substrate: Love and Lamb waves which propagate in a plate, and 
Rayleigh wave propagating on a substrate. The following review of the guided wave 
literature is not intended to be exhaustive; rather it covers only those papers which 
authors regarded as essential for the subsequent analysis.  

 

2.1 LOVE AND SH-WAVES 

 These are waves which can propagate in a layer, or multiple layers in contact 
with an elastic half-space, where an exponentially attenuating ( with depth  )  wave of the 
same polarization propagates. Described by A.E.H. Love (1927), these waves were then 
extensively studied both analytically, see (Dieulesaint and Royer, 1974), (Achenbach, 
1975) and experimentally. These waves can play an important role in nondestructive 
mechanical property characterization.  

 A single isotropic layer on isotropic half-space with doubly corrugated surfaces 
(both the interface and free surface) was studied by Elbahrawy (1994), see also (Lobkis 
and Chimenti, 1997). A theoretical analysis of Love waves propagating in layered 
isotropic media by reducing the problem to a series of step-continuous ordinary 
differential equations was suggested by Mal and Knopoff (1968).  

 Quite often Love waves are registered in the course of seismic activity, see  (Mal 
1962), (Chastel and Dawson, 1993) and explosions (Penttila, 1960), (Mclaughlin et al., 
1992), (Simons, Zielhuis, van der Hilst, 1999). These waves are also used in seismology 
for identifying the properties of sedimentary basins (Kennett, 1995, 1998), (Zhang Y.-S., 
and Tanimoto, 1991), (Hisada, Yamamoto, and Tani, 2001). See also recent papers on 
Love and SH-wave propagation (Kuznetsov, 2004, 2005). 

 It should be noted, that in Love’s original treatise and in most  subsequent 
works, a wave propagating in a layer is assumed to have real wave numbers. This results 
in neglecting possible wave modes with the exponential variation of the amplitude. 
However, the latter type of waves arise for some types of anisotropy when the wave 
length is comparable or smaller than the typical layer thickness.  

 

2.2 LAMB WAVES 

 These waves were originally proposed by Lamb (1904, 1917)  and arise in an 
isotropic layer with the traction-free boundary surfaces. In contrast to Love waves, Lamb 
waves, generally are composed by several partial waves having different polarization. 
Lamb waves are widely used in NDT because of their low attenuation. One of the early 
theoretical studies of Lamb waves propagating in isotropic layers is due to Victorov 
(1967), where structure of the dispersion relations was analyzed, and the three 
fundamental brunches of the wave spectrum were observed. Correlation of Lamb waves 
with a membrane carrier wave in an isotropic plate was considered by Achenbach (1998). 



 Presumably, the first derivation of equations for analysis of Lamb waves 
propagating in a stratified medium containing arbitrary number of isotropic layers was 
proposed by Thomson (1950), who introduced a transfer matrix, which allows us to 
express the displacements and surface tractions at the bottom of a particular layer in 
terms of the corresponding parameters at the top of a layer.  Later on this method was 
corrected by Haskell (1953), and at present is known as Thomson-Haskell or “Transfer 
matrix” method. Various numerical implementations of this method revealed, that it leads 
to numerical instability in the course of degenerate matrices when layers of large 
thickness compared to the wavelength are presented, see Lowe (1995).  An alternative 
approach known as “Global matrix” method, for analysis of Lamb waves propagating in 
isotropic laminates, was proposed by Knopoff (1964). In this method a single matrix 
comprising all of the boundary conditions for all of the layers is constructed.  Numerical 
implementations of this method revealed that it is much more robust in comparison with 
the Thomson-Haskell method, see Mal (1988). 

 The study of Lamb waves in anisotropic layers with s specific  anisotropy goes 
back to Lekhnitskii (1949), Newman and Mindlin (1957), and Mindlin (1960). Adler 
(1990) reduced the problem of Lamb wave propagation in a multilayered structure 
containing anisotropic layers with  specific  anisotropy, to purely a algebraical one; see  
(Adler et al., 1990) and an early paper by Fahmy and Adler (1972). A simplified 
analytical  method for analysis of Lamb waves in a multilayer plate containing 
anisotropic layers was later proposed by Yang and Kundu (1998).  

 The following papers are also devoted to the analysis of Lamb waves 
propagating in anisotropic plates with specific anisotropy (Dayal and Kinra; 1989, 1991), 
(Liu et al., 1990), (Lin and Keer, 1992). A combination of analytical solutions and 
numerical procedures for analysis of a thin anisotropic film on an anisotropic substrate 
with cubic or hexagonal symmetry was used by Mallah, Philippe, and Khater (1999), 
similar approach was applied by Nakahata et al. (1995). Extrapolation of the 
corresponding results to layers with the arbitrary anisotropy was undertaken only 
recently, see theoretical works by Shuvalov (2000) and Kuznetsov (2001).  

 Lamb waves in the periodically layered anisotropic composites were studied by 
Ting and Chadwick (1988) by application of the sextic formalism. Obliquely traveling 
Floquet partial wave solutions for analyzing Lamb waves propagating in a periodically 
layered composite plate were used by Safaeinili et al. (1995). A method based on the 
asymptotic expansions for analysis of both Lamb and Rayleigh waves in layered media 
containing layers with weak anisotropy, was proposed by Rossikhin (1992). A heuristic 
homogenization technique for analysis of surface waves in layered anisotropic structures 
containing periodically alternating layers, was proposed by Park (1996), see also (Potel et 
al., 1999) for experimental verification of the theory of surface waves in multilayered 
structures with infinite number of periodical layers (in the latter paper the resulting wave 
turns out to be a Rayleigh wave, while in a particular layer it is a Lamb wave). Lamb 
waves in a composite plate having the internal structure composed by thin layers oriented 
transversely to the plate surfaces were considered by Chimenti (1994). 

 

2.3 RAYLEIGH WAVES 



 In the pioneering work by Lord Rayleigh ( 1885) a secular equation for the 
speed of an exponentially decaying with depth surface wave propagating on isotropic 
half-space was found. Only much later were approximate formulae (Bergmann, 1933), 
(Victorov, 1967), (Mozhaev, 1991) and analytical solutions (Rahman and Barber, 1995), 
(Grishin, 2001) obtained for Rayleigh wave on an isotropic half-space.  

 The Rayleigh method was later extrapolated to anisotropic media by Stoneley 
(1955), who obtained expressions for the Rayleigh wave speed, provided that wave 
propagates in the plane of elastic symmetry of a cubic crystal and in a direction of 
crystallographic axes. Some errors in Stoneley’s arguments were, however, introduced by 
neglecting the possibility oscillating solution.  Tthis was eventually corrected by Synge 
(1956). Subsequently, the solution was extrapolated to the high symmetry directions in 
hexagonal crystals (Dielesaint and Royer, 1980) and in orthorombic crystals (Royer and 
Dielesaint, 1985).  

 A numerical approach based on the three-dimensional complex formalism, was 
developed by Farnell (1970). He studied both the Rayleigh wave speed and its 
polarization for a great number of monocrystals mainly of cubic symmetry, and did not 
discover any “forbidden direction” along which Rayleigh wave could not propagate. It 
should be mentioned that even though this approach constitutes the most powerful tool 
for numerical Rayleigh wave analysis, this method can lead to wrong solutions when 
multiple roots of the characteristic polynomials associated with the Christoffel equation 
arise.  

 A kind of six-dimensional formalism for Rayleigh wave analysis was proposed 
by Stroh (1962). It is based on similarity of solutions for line dislocations in unbounded 
medium and propagation of Rayleigh waves. This approach was mainly developed by 
Barnett and Lothe (1973, 1974) and later by Chadwick et al. (1977, 1979). By application 
of this formalism,  theorems of uniqueness and existence for such waves were proved.  

 A newly developed variant of the six-dimensional formalism (Kuznetsov, 2002a, 
b) allowed him to obtain analytical solutions for some cubic and hexagonal crystals, 
when a special kind of degeneracy occurs. See also (Tanuma, 1996) and (Ting, 1997), 
where the similar situation is studied by applying Stroh’s formalism. Comparing these 
two types of complex formalism, it should be noted that both are equally applicable to 
analysis of half-spaces or layers with homogeneous boundary conditions. Presumably, 
inhomogeneous or contact type boundary conditions could be analyzed more easily by a 
newer variant of the six-dimensional formalism. 

 

2.4 CONCLUDING REMARK ON THE LITERATURE REVIEW 

 The literature review reveals that the following theoretical problems need to be 
analyzed and solved in the course of the proposed research effort: (i) constructing 
solutions for Rayleigh and Lamb waves propagating in (homogeneous) media with 
arbitrary elastic anisotropy and satisfying the inhomogeneous boundary conditions for 
surface traction fields; (ii) constructing and analyzing solutions for guided waves in 
laminated bodies composed by finite number of anisotropic layers. 



 Along with the main theoretical problems, several technical questions should be 
also solved including: (i) development of numerical algorithms for resolving matrix 
differential equations associated with the Christoffel equation, (ii) development of high 
precision algorithms for root determination for polynomials of the high order (up to 63d 
for 10 anisotropic layers on an anisotropic substrate with arbitrary anisotropy); (iii) 
constructing the solution for the eigenproblem associated with the special non-symmetric 
matrices arising in the surface wave analysis of multilayered structures.  



 

 

3 Work in progress  
 

 Recent work at the Institute for Problems in Mechanics of Russian Academy of 
Sciences (IPM) on surface wave analyses for determination of physical properties of 
layers in multilayered structures has focused on (i) developing a theory of bulk, Rayleigh, 
Love and Lamb waves propagating in anisotropic media with arbitrary elastic anisotropy, 
based on the six-dimensional complex formalism with a view to avoid restrictions of 
known analytical solutions, and (ii) developing adequate theory and numerical algorithms 
for analysis of the layered structures.  

 

3.1 BASIC NOTATIONS  

 An outline of the theory of surface waves based on six-dimensional complex 
formalism, is given for Rayleigh and Lamb waves, similar approach with obvious 
simplifications and modifications can be applied to analysis of Love waves. 

The equation of dynamics for anisotropic hyperelastic media has the form: 

 div C u u⋅ ⋅∇ − =ρ 0  (1) 

where u is the displacement, ρ  is the density of the medium, and C is a positive definite 
four-dimensional tensor of elasticity; i.e.  
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The displacement field for plane surface wave has the following representation: 
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where m is a complex amplitude vector, ν  is the unit vector normal to the plane of 
propagation Πν , ′ ⊂n Πν  is the unit vector defining the direction of propagation of 
Rayleigh or Lamb wave, and c is the corresponding phase speed. For Rayleigh waves it 
will be assumed that ν ⋅ >x 0 and that the wave attenuates with depth, so α > 0 , while β  
can be arbitrary real. For Lamb waves both parameters α  and β  are arbitrary. 

 Along the boundary surfaces, boundary conditions for the zero surface tractions 
must be given; e.g. 
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3.2 LIMITING SPEEDS 

 Substitution of the Eq. (3) into Eq. (1) gives Christoffel’s equation for the 
determination of the exponent γ ; i.e. 
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At the fixed speed c this is a polynomial of degree 6 in γ .  

 Definition. Limiting speeds which correspond to the unit vectors ν  and n′ , are 
defined by: 
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where iλ , i=1,2,3 are eigenvalues arranged in descending mode, and w is the unit (real) 
vector belonging to the sagittal plane, and  ν)sin()cos( ϕ+′ϕ= nw .  

 It is obvious that if lim
1cc < , then Christoffel’s equation has only one pair of 

complex-conjugate roots, and if lim
3c c< , then there are three pairs of complex- conjugate 

roots. Since for existence of the Rayleigh wave at least one pair of complex conjugate 
roots is needed, one concludes the following rule: 

 Proposition 1  Speed of the Rayleigh wave can not exceed lim
1c . 

 For Lamb waves limiting speed lim
3c  specifies waves traveling with the subsonic 

speed. 

 

3.3 PROPERTIES OF CHRISTOFFEL’S EQUATION 

 Christoffel’s equation, written in terms of a complex root, produces an equation 
for the appropriate (complex) eigenvectors in 3C   
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Hence, the following additional conclusion directly flows from the analyses of Eq. (7) 

 



 Proposition 2. a) If )(ker, 2IAmm cρ−∉′′′ , then )(ker, Bmm ∉′′′  and 
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in the real (necessarily two-dimensional) space generated by vectors m′  and m ′′ ; 

 b) If )(ker, 2IAmm cρ−∈′′′ , then )(ker, Bmm ∈′′′ ; 

 c) If )(ker 2IAm cρ−∈′  and )(ker 2IAm cρ−∉′′ , then Bm ker∈′′  and 
Bm ker∈′′  and Bm ker∉′  (and vice versa).  

 It is obvious that Proposition 2 covers all possibilities for components of the 
eigenvector of matrix G. 

 Corollary 1. Condition of the Proposition 2.a ensures that: 

 a) Both matrices B and )( 2IA cρ−  are not of fixed sign in the two-dimensional 

subspace 3RZ ⊂  generated by the components m′  and m ′′ ; 

 b) B A I( ) , ( )Z Z c Z⊂ − ⊂ρ 2 ; 

 c) Unimodal matrix B A I− −1 2( )ρc  in any basis in Z has the form 
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where δ  and χ  are real, and χ ≠ 0; 

 d) Matrices A and B do not commute with each other. 

 

 Corollary 2. Condition of the Proposition 2.c ensures that: 

 a) Vectors m′  and m ′′  both are noncollinear; 

 b) Tensors IA 2cρ−  and B have following structure 
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where 21, cc  are non-zero real numbers, vectors 3
21,, R∈′ vvm  are mutually orthogonal, 

and vectors 3
21,, R∈′′ wwm  are mutually orthogonal also. 

 

 Corollary 3. The real part β  of the complex root satisfies the inequality 
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 Proposition 3.  For any complex root γ  the matrix G is not normal. 

 

 Proposition 4. Under condition of the proposition 2.b the eigenspace in 3R  
generated by vectors mm ′′′,  is one-dimensional. 

 

 Let W G  be eigenspace of matrix G  corresponding to the eigenvalue 2cρ . 

 

 Proposition 5.  a) 1dim =GW , provided that both matrices IAA 2cρ−≡′  and 
B  do not have zero eigenvalues, and relation (8) holds; 

 b) 2dim =GW , provided that relation (8) holds, and both matrices 

IAA 2cρ−≡′  and B  have zero eigenvalue; 

 c) 1dim =GW , provided that relation (8) does not hold, and both matrices 

IAA 2cρ−≡′  and B  have zero eigenvalue. 

 

3.4 BOUNDARY CONDITIONS ON THE OUTER SURFACE 

 For any value of the parameter lim
1

2 cc <ρ , the surface wave can be composed of 
3≤n  partial waves: 
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where jC  are complex scalars. In Equation (12) complex roots are considered according 
to their multiplicity. Substitution of this representation into boundary conditions (4) gives 
the following matrix equation with respect to jC : 
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 Equation (13) can be written in the form 0=⋅CH . Generally, the matrix H is 
not Hermitian, but it is possible to construct Hermitian matrix HH ⋅*  which is equivalent 
to H with respect to its rank 
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This matrix is more convenient for the computations. Vanishing of the determinant of this 
matrix ensures the existence of a nontrivial solution for coefficients jC .  

 

3.5 BOUNDARY CONDITIONS ON THE INTERFACE 

 At the interface plane 1k−Π  the following contact type boundary conditions are 
formulated: 

 1

1

;k k

k k

−

−

= −
=

t t
u u

 (15) 

where kt  is the surface traction field for the k -th layer. Substituting the corresponding 
surface tractions and displacements into Eqs. (15) yields equations containing the 
unknown coefficients jC . The desired secular equation will be obtained by equating the 
corresponding determinant to zero, which ensures existence of non-trivial solutions for a 
multilayered plate.  

 Direct analysis shows that for the general case of elastic anisotropy in both 
layers and the substrate, the order of thus obtained system S  of linear equations becomes 

 ord( ) 6 3S k= +  (16) 

where k  is number of layers. The nontrivial solution of the system S  exists if and only if 
rank( ) ord( ).S S<   

 It should be noted that when both layers and the substrate have a plane of elastic 
symmetry coinciding with the sagittal plane (the latter is determined by direction of wave 
propagation n  and the unit normal ν  to the plane boundary), the order of the system S  
can be computed by the following expression 

 ord( ) 4 2S k= +  (17) 

 

3.6 CONCLUDING REMARK 

 A more detailed analysis of Rayleigh and Lamb waves propagating in 
anisotropic media with arbitrary elastic anisotropy, along with some of solutions for 
cubic and hexagonal crystals can be found in the recent papers by one of the authors 
(Kuznetsov, 2001, 2002a, b). 



 

 

4 Objectives 
 

 The proposed research effort has several objectives having significance for both 
theory and applications:  

1. Development of the theory of surface waves (Rayleigh, Lamb, surface SH, 
and Love waves) propagating in homogeneous media with arbitrary 
anisotropy, free from inherent limitations in the existing approaches. 

2. Development of numerical and analytical methods based on the six-
dimensional complex formalism for analyses of speed and polarization of 
surface waves propagating in arbitrary directions in anisotropic media. 

3. Development of the theory of surface waves in laminated anisotropic bodies 
composed by finite number of different layers lying on an anisotropic 
substrate. 

4. Development of the regularization techniques and inverse numerical 
algorithms for determination of physical properties of layer(s) principally 
through the analysis of the dispersion relations of guided waves in 
multiplayer structures. 

 

 Along with the main objectives, the following immediate goals should be 
mentioned: 

1. Contribution to non-destructive evaluating properties of the internal layers in 
microelectronics, as well as seismology, biomechanics, and acoustical 
microscopy by analyzing speed and polarization of the surface waves 
propagating in the stratified media. 

2. Contribution to numerical mathematics by developing high precision 
program packages for the root determination of the polynomials of high 
order; solving eigenproblems for matrices of the special structure, and 
developing numerical algorithms for solving the impedance boundary value 
problems for matrix ODE. 

 It is believed that the research effort will lead to a better understanding of the 
problem of surface waves propagation in the stratified media containing multiple 
anisotropic layers. 

 



 

 

5 Scope 
 

5.1 DEVELOPMENTS IN THE THEORY OF SURFACE WAVES  

 As was pointed out earlier, previous theories of the regarded surface waves 
propagating in homogeneous anisotropic media ignore the case of inhomogeneous 
boundary conditions for the surface traction fields (with the only exception of the 
clamped boundary conditions). The theory which takes into account this circumstances is 
been developing by one of the teams (IPM) for several years. The following steps should 
be made to complete the theory: 

• Proof of the equality of algebraic multiplicity of eigenvalue 2cρ  to its 
geometric multiplicity in relation to the Christoffel equation for surface 
waves; this will result in the complete characterization of spectral properties 
of the Christoffel equation; 

• Analyses of conditions imposed on the elasticity coefficients of cubic and 
hexagonal crystals and on the inhomogeneous boundary conditions, at which 
no Rayleigh, Love, surface SH, or Lamb wave can propagate, resulting in 
revealing the situations at which barriers for the surface waves exist; 

• Study of the spectral properties of the equations for surface waves 
propagating in the stratified media with finite number of anisotropic layers 
on the substrate with cubic or hexagonal symmetry, resulting in obtaining 
analytical expressions for the dispersion relations. 

 

5.2 DEVELOPMENTS IN THE THEORY OF INVERSE PROBLEMS FOR 
IDENTIFICATION OF THE PROPERTIES OF LAYER(S) BY ANALYZING THE 
DISPERSION RELATIONS 

 Application of the considered theory needs in solution of the following 
theoretical problems: 

• Analysis of the (multivalued) operator mapping the whole set of admissible 
values of the parameters describing the process of wave propagation onto the 
set of possible values of the wave velocities; proof of the compactness of any 
of the continuous branches of the operator, resulting in proof of the ill-
conditionality of the inverse operator for a continuous branch operator. 

• Application of the regularization technique based on construction of the 
Tychonov regularization operator for obtaining numerically stable solutions 
for the regarded inverse problem; numerical determination of the optimal 
regularization parameters for constructing the continuous inverse operators . 



• In the event that no continuous inverse operator can be obtained, iterative 
schemes for this operation will be developed.  Of particular importance in 
this phase of the effort will be the potential use of genetic algorithms to 
avoid problems in the reconstruction process due to the presence of local 
minima.  

 

5.3 SOFTWARE DEVELOPMENT 

 Computer codes based on the preceding analyzes will be developed bearing in 
mind (i) the reliability of the obtained data; (ii) the speed of computing; and (iii) the ease 
of use. The source program will be developed in FORTRAN (main computations) and in 
C++ (shell, user interface, graphical visualization). The following program packages 
utilizing the high precision arithmetic (with mantissas up to 1K digits) will be developed: 

• Program package for analysis of the surface waves in homogeneous media 
with arbitrary elastic anisotropy, based on the developed six-dimensional 
complex formalism. 

• Program package for solution of the multiple contact problems on the 
interfaces for surface waves traveling in the multilayered media 

• Program package for solution of the inverse problem on identifying properties 
of the layer(s) by applying the regularization techniques. 

 Special attention will be given to the problem of relocation of the program to 
different platforms (PC’s, RISC work stations, Main frame computers).  

 

5.4  SIMULATION 

 

 In order to assess the utility of this approach for the characterization of multiple 
functional layers on an anisotropic substrate, a series of simulated reconstruction 
experiments will be conducted.  The theoretical dispersion curves for guided wave 
propagation on a series of samples of varying composition and geometry will be studied. 
The configurations will be chosen to be representative of microelectronic applications. 
The substrate under consideration will be single crystal silicon with a [100] orientation.  
A variety of different layer sequences will be studied.  Typical coating layer materials 
will be isotropic and include polycrystalline silicon, silicon carbide and silicon nitride.  A 
variety of layer thicknesses will be investigated ranging from 100 Angstroms to 1000 
Angstroms. Dispersion curves will be generated sequentially for each layer as it is being 
deposited.  The inversion algorithm developed in this program will then be used to 
reconstruct the elastic moduli and thickness of the multiplayer structure. 

 

 

 



 

5.5 Experimental Verification 

 

           The next stage in the development of this technique for practical 
application to electronic materials characterization is experimental verification.  
Samples will be created with the same composition and geometry of the 
simulation. A high power Q-switched Nd-YAG laser will be used to excite the 
acoustic waves on the sample and a confocal Fabry-Pereot interferometer will be 
used to sense the resulting acoustic disturbance.  The detected waveform 
information will be used to construct the experimental dispersion curves 
required for the reconstruction. 

           The basic physics behind laser generation of ultrasound are well 
documented and understood.   When a target material is exposed to a localized 
laser pulse, the material in the vicinity will experience a rapid thermal 
expansion. This serves as a center of dilatation within the material and launches 
stress waves into the material. Thus we have a noncontact, nondestructive means 
of launching stress waves in a media in a controlled fashion.  The bandwidth for 
these pulses is quite wide and well suited for characterizing thin films and 
coatings ( Doxbeck et. al. , 2002 ).   It should be noted that, as the intensity of 
the laser is increased, there is the possibility of surface ablatement. This is of 
course, a means of generating large amplitude stress waves but is destructive. 
Here, stress waves are launched as matter is ejected from the surface via 
momentum transfer, As we seek a nondestructive measure of material properties, 
we will operate well below the threshold energy for surface ablatement. 
Depending on the geometry, both bulk waves ( longitudinal and shear ) and 
guided waves ( Rayleigh,  Lamb , Love, Stoneley ) can be generated. Since we 
are dealing with layered media in this research effort, we will concentrate here 
on Love waves.  Laser generation has been used extensively to study guided 
waves in solids, albeit at somewhat lower frequencies than those required for 
thin film characterization. 

 

         Similarly, there has been a great deal of study regarding noncontact laser 
sensing of the surface displacements.  One of the authors of this proposal (RAK) 
was involved with some of the original applications of laser detection to 
ultrasonic wave propagation phenomena ( Kline et. al 1978, 1981 ).   In these 
early investigations, a Michaelson interferometer was used to precisely measure 
the normal component  of surface displacement.  In order to address sensitivity 
fluxuations due to small random, low frequency changes in the operating 
environment,  a path stabilization feature was introduced into the design of the 
interferometer through the use of a piezoelectrically driven mirror on the 
reference arm of the interferometer.  This approach has been supplanted more 
recently through the use of a confocal Fabry-Perot design which results in a 
significantly more stable signal. 



 

        

 Most of the experimental work to date with guided waves  has involved plate waves. 
Plate waves are multi-mode and highly dispersive and have much in common with the Love 
waves of interest in this study.  In most cases, this presents a problem as it difficult to isolate 
a particular mode of interest in the complex waveforms that are usually found in these 
experiments.  Therefore, a great deal of research effort has been devoted to developing 
techniques of mode isolation for plate wave applications, both isotropic and anisotropic.  
These methods include: 

 

• Signal Processing 

• Electromagnetic Acoustic Transducers ( EMAT’s) 

• Laser Techniques 

• Interdigital Transducers 

 

 The most common approach to mode isolation is through the use of advanced signal 
processing techniques.  Spectral refinement using narrow band signals and Fourier 
processing techniques, for example, can be used to isolate a particular component of interest 
in a complex waveform as demonstrated by Cawley and Alleyne (1993).  Alternatively, one 
can use specialized generation techniques, to produce a particular mode of interest by 
tailoring the source to match the desired characteristics of the mode of interest,  Here, the 
goal is to excite a propagating disturbance of a single wavelength  While the physical 
generation mechanism is different, this approach is the basis for EMAT, laser and interdigital 
generation.  For laser based experiments, a diffraction grating is used to produce multiple 
lines which are spaced according to the wavelength of the plate mode of interest ( Addison 
and McKie, 1995 and Nagata et. al. 1995 ).  In this way a single mode can be readily 
isolated.  This is the approach we will utilize in this study. 

 

 Laser based techniques will be used to construct dispersion curves for guided wave 
propagation in each layer of the electronic device after deposition.  These results will then be 
used to reconstruct the mechanical properties of the newly deposited, unknown layer.   This 
means that we will rely upon the known properties of the substrate as well as the 
experimentally determined properties in the previously deposited layers in the 
reconstruction. In this way we will be able to determine all pertinent mechanical properties 
throughout the structure.  These results will be compared with literature values for these 
parameters.  However, there is a considerable spread in the reported data for thin films of 
many of these materials 9 Maximenko et. al. 2002. This variation is largely attributable to 



sensitivity to small variations in processing conditions during deposition.  Therefore, we will 
supplement this phase of the investigation with direct stiffness measurements from the 
vibrational characteristics of cantilever beam samples made with isolated thin film material.  
This of course means using much lower frequencies than those of the ultrasonic tests.  
However, these ceramic materials do not appear to exhibit a large frequency dependence in 
their mechanical response for bulk specimens.  It is reasonable to believe that the same 
would be true for the thin films as well. 

5.6 Facilities 
 

Several of the support facilities required for this project are already in place at SDSU.  
We have a high power Q-switched Nd-YAG laser from Continuum that can be used 
for ultrasonic excitation. We will need to build the optical system for generating  
multiple line sources and controlling their spacing.  We are currently working closely 
with the U.S. Navy’s Spawar’s facility on a related project on modeling the 
mechanical behavior of MEMS assemblies.  We will be able to use some of the 
specimens developed for the current U. S. Navy project in the research program 
proposed here. There is one main equipment purchase planned for this program.  We 
will need to purchase a a confocal Fabry-Perot interferometer for precise , high 
frequency surface displacement measurements. This equipment will be purchased in 
year 1 of this program. 

Sample characterization equipment includes a Buehler precision saw, polishing 
machine Rotoforce-2, dilatometer from Theta Inc. (for thermal expansion 
measurements), optical image analysis system, and a cold and hot mounting press (for 
SEM preparation).  Computational facilities include Silicon Graphics computers, each 
with Stereographic Crystal Eyes, and thirty SUN Sparc Ultras, networked with 
myrnet running UC Berkeley’s NOW network.  SDSU is also a member of the 
national CRAY Supercomputer Consortium with on-campus vBNS network 
connection.  There is also a scanning electron microscope on campus that will be 
available for use in this program. 
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Year 1 Budget 

 

Salaries 

 

R. Kline        Academic Year  ( 3 months at 10%)                                                $  3,230 

           Summer            ( 1 month at 100%)                                                 $10,770 

 

S. Kuznetsov             ( 3 months )                                                                        $15,000 

 

Postdoctoral RA   (1 year )                                                                                    $30,000 

 

Fringe Benefits 

 

R. Kline                                                                                                               $ 3,500 

S. Kuznetsov                                                                                                       $ 2,000 

Postdoctoral RA                                                                                             $ 6,000 



 

Materials and Supplies 

 

Specimen Fabrication $ 5,000 

Optics for Laser Generation( diffraction grating, optical fibers, etc.) $ 2,500 

 

Travel 

 

3 Trips between Moscow and San Diego for PI's & RA                               $ 7,500 

 

Total Direct Costs $85,500 

Total Indirect Costs $44,460 

 

Equipment 

Confocal Fabry-Perot Interferometer $ 75,000 
            
Total  $204,460 

 

 

 

 

 

 

 

 

Year 2 - Budget 

Salaries 

 

R. Kline        Academic Year  ( 3 months at 10%)                                                $  3,360 

           Summer            ( 1 month at 100%)                                                 $11,200 

 

S. Kuznetsov             ( 3 months )                                                                        $15,600 

 



Postdoctoral RA   (1 year )                                                                                    $31,200 

 

Fringe Benefits 

 

R. Kline                                                                                                               $ 3,640 

S. Kuznetsov                                                                                                       $ 2,080 

Postdoctoral RA      

                                                                                        $ 6,240 

Materials and Supplies 

Miscellaneous $ 2,500 

Travel 

 

3 Trips between Moscow and San Diego for PI's & RA                               $ 7,500 

 

Total Direct Costs $83,320 

Total Indirect Costs $43,326 
            
Total  $126,646 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


