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1. Introduction

1.2. Some experimental data concerning propagation of acoustic
waves in rocks and soils
1.2.1. Basic definitions

A wave propagating 1n a given material 1s called
( ), 1f its speed 1s

( ) than the corresponding speed of the

longitudinal wave propagating 1n the same

direction

A wave 1s called hyposonic ( ), 1f 1ts

oscillations in time are ( ) than the
audible frequencies: 20 — 20 000 Hz



1. Introduction

1.2. Some experimental data concerning propagation of acoustic

waves in rocks and soils
1.2.2. Frequency range

Wave nature

Frequency range

Seismic waves of natural
origin

0.001 - 50Hz

Most dangerous: 1-30Hz

Waves of artificial nature

10 - 120Hz

Most dangerous: 10-70Hz




1. Introduction

1.2. Some experimental data concerning propagation of acoustic
waves in rocks and soils
1.2.3. Speed range for longitudinal waves

Material Speed m/sec
air 330 - 360
soil 200 - 800
sand 100 - 1000
water 1430 - 1590
slate (shale) 2000 - 5000
limestone 3000 - 6000
granite 4500 - 6500




1. Introduction

1.2. Some experimental data concerning propagation of acoustic
waves in rocks and soils
1.2.4. Wavelength ranges
1.2.4.1. Wavelength range for seismic longitudinal waves

Wavelengths for seismic longitudinal
waves from 1 to 50 Hz

[=c/o, Material Wavelength m

where soil 40 - 800

[ is wavelength sand 2 - 1000
water 29 - 1590

¢ 1s speed slate (shale) 40 - 5000

@ is frequency limestone 60 - 6000

granite 90 - 6500
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1.2.

Some experimental data concerning propagation of acoustic
waves in rocks and soils
1.2.4. Wavelength ranges

1.2.4.2. Remark for wavelength of seismic waves

[=c/w,

where

[ is wavelength
Cc 1s speed

@ 1s frequency

As was pointed out previously there can
be seismic waves propagating with very
low frequencies (0.01-1Hz), for such
waves the corresponding wavelength can
be sufficiently larger, than pointed in the
previous table. Thus, for granites the
wavelength of longitudinal waves can
have up to 650 km.



1. Introduction

1.2. Some experimental data concerning propagation of acoustic
waves in rocks and soils
1.2.4. Wavelength ranges
1.2.4.3. Wavelength range for artificial longitudinal waves

Wavelengths for artificial
longitudinal waves from 10 to 70 Hz

[=c/o, Material Wavelength m
where so1l 28 - 80
sand 1-100
[ is wavelength o 20 - 159
c 1is speed slate (shale) 28 - 500
limestone 42 - 600

@ 1s frequency

granite 63 - 650




1. Introduction

1.3. Seismic waves scales
1.3.1. Richter magnitude scale

Charles Richter (1935) arbitrarily chose a magnitude O event to
be an earthquake that would show a maximum combined
horizontal displacement of 1 micrometer on a seismogram
recorded using a Wood-Anderson torsion:

M, = log,,A(mm) + (Distance correction factor)

According to Richter scale, earthquakes of magnitude
<3 are not felt (frequency 1s ~1000 per day)
5 - 6 can cause damage (~800 per year)
7 - 8 serious damage  ( ~18 per year)
8 -9 severe damage ( ~I1 per year)
>9 extreme damage  ( ~I1 per 20 years)



1. Introduction

1.3. Seismic waves scales
1.3.2. Mercalli intensity scale

The Modified Mercalli Intensity Scale (originated to seismologist
Giuseppe Mercalli, 1902) i1s commonly used by assigning numbers
I — XII according to severity of the earthquake effects, so there may
be many the modified Mercalli intensity values for each earthquake,
depending upon distance of the epicenter.

According to the Mercalli modified intensity scale:

I. People do not feel any Earth movement.
II. A few people might notice movement.
III. Many people indoors feel movement.
IV. Most people indoors feel movement.

XII. Almost everything 1s destroyed.
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1.3. Seismic waves scales
1.3.3. The greatest earthquake

According to Richter scale, the greatest recorded earthquake

occurred on 22d May, 1960 1n Chili (The Great Chilean
Earthquake or Valdivia Earthquake).

This earthquake was measured 9.5 by Richter scale.

Remark

The earthquake caused localized tsunami that hit the Chilean coast
severely, with waves up to 25 meters high. The main tsunami ran
through the Pacific Ocean and hit Hawaii, where waves as high as
10.7 meters high were recoded
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1.4. Typical seismograms
1.4.1. Earthquake 6.7MO in Southern Greece 14/02/2008
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1. Introduction

1.4. Typical seismograms
1.4.1. North California Seismic Station, Feb 2008
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1. Introduction
1.5. Consequences of the Earthquakes (Kobe,

1.5.1. Overview

At 5:46 in the morning, a magnitude 6.9 (V1 w) earthquake struck
Kobe 1n Japan. About 5,500 people died and 35,000 were injured.

Nearly 180,000 buildings were damaged or destroyed, leaving more
than 300,000 people homeless that night

The Earthquake Engineering Research Center
University of Bristle

Damage to buildings: Fully collapsed 67,421 structures
Partially collapsed 55,145 structures

The Great Hanshin-Awaji Earthquake Statistics and Restoration Progress January 1, 2008
http://www.city.kobe.jp/cityoffice/06/013/report/january.2008.pdf
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1.5. Consequences of the Earthquakes (Ko
1.5.2. Local damage

The Earthquake Engineering Research Center
University of Bristle

City of Kobe. City council
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1.5. Consequences of the Earthquakes (Niig

1.5.3. Liguefaction

Liquefaction Damage, Niigata, Japan, 1964

@ FEMP_‘ Instructional Material Complemanting FEMA 451, Design Examples Earthiquaks Mechanlce 2 - 22

Liquefaction and Lateral Spreading,
1993 Earthquake in Kobe, Japan

% FEMA

Instructional Materlal Complemanting FEMA 451, Dasign Examplas

Earthquake Mechanice 2 - 23
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1.5. Consequences of the Earthquakes (
1.5.4. Local ground faults

a report by J.-P. Bardet
( and others at Gifu Univ.;
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1.5. Consequences of the Earthquakes (
1.5.5. Different (local) damage intensity

Kobe City Office
.city.kobe.jp/cityoffice/15/020/quake/teiten/images/




1. Introduction
1.5. Consequences of the Earthquakes (Kobe

1.5.6. Conclusions

The wave nature of seismic activity should be taken into

account, when seismic protection 1s developed
This 1s implemented in EC8 (EU) and BCJ (Japan) for S-waves
traveling in layered soils:

E.M.Marino et al, Engineering Structures 27 (2005) 827-840
The existing methods for seismic protection need in revision

The newly developed methods and principles of seismic
protection should be foreseen
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4. Theoretical methods in acoustical studies

4.3. Bulk wave propagation in anisotropic elastic media
4.3.1. Introduction
4.3.1.1. Basic definitions

A wave 1s a periodic or quasi periodic movement in
time and space.

Wave front 1s the geometrical set of points vibrating
with the same phase.

Types of waves according to the wave front

Spherical waves
Cylindrical waves

Waves with a plane wave front



4. Theoretical methods in acoustical studies

4.3. Bulk wave propagation in anisotropic elastic media
4.3.1. Introduction
4.3.1.2. Remark on no mass transfer

At wave motion no mass transfer occurs.

This 1s applied to all the (linear) theories of acoustic
waves.

®2002, Dan Bussell




4. Theoretical methods in acoustical studies

4.3. Bulk wave propagation in anisotropic elastic media

4.3.2. The main equations for bulk waves
4.3.2.1. Representation for a wave with the plane wave front

u(X t) _ meir(n-x—ct)

u 1s a displacement field

X 1s a space variable

t 1stime

m 1s the amplitude (polarization) of the wave

r 1s the wave number (r =2n//, or r=w/c)

n is direction of propagation (n 1s the unit vector)

c 1s the phase speed



4. Theoretical methods in acoustical studies

4.3. Bulk wave propagation in anisotropic elastic media
4.3.2. The main equations for bulk waves
4.3.2.2. Acoustic tensor

Substituting representation for the plane wave front into equation

of motion yields 5
zr(n-C-n—pc I)-m:O

Definition for the acoustic tensor

An)=n-C:-n

The acoustic tensor can be constructed for any direction
n, and it is symmetric and positive definite for any kind
of elastic anisotropy



4. Theoretical methods in acoustical studies

4.3. Bulk wave propagation in anisotropic elastic media
4.3.2. The main equations for bulk waves
4.3.2.3. Christoffel equations

(A(n) — pczl) -m=0 ==mp det (A(n) — pczl) =0

!

Q'+(Dy(m) —pe’l)-Q=0

Dam= 2 — = /L, k=123
\ A3 P




4. Theoretical methods in acoustical studies

4.3. Bulk wave propagation in anisotropic elastic media
4.3.2. The main equations for bulk waves
4.3.2.4. Polarization

A(n) = 7\41m1 X ml - 7\.2m2 X m2 + 7\,3m3 X m3
my, k = 1,2,3

Polarization vectors corresponding to different
eigenvalues of the acoustic tensor are just its
eigenvectors

Are the mutually orthogonal and normal
eigenvectors of the acoustical tensor



4. Theoretical methods in acoustical studies

4.3. Bulk wave propagation in anisotropic elastic media
4.3.2. The main equations for bulk waves
4.3.2.5. Classification of bulk waves according to polarization

A wave 1s called , 1f polarization
coincides with the direction of propagation

A wave 1s called , 1f polarization
1s orthogonal to the direction of propagation

A wave 1s called quasi longitudinal, i1f the scalar product

A wave 1s called quasi transverse, if the scalar product



4. Theoretical methods in acoustical studies

4.3. Bulk wave propagation in anisotropic elastic media
4.3.2. The main equations for bulk waves
4.3.2.6. Visual representation for polarization of P- waves

““““‘.

© Copyright 2004. L. Braile. Permission
granted for reproduction and use of files and
animations for non-commercial uses



4. Theoretical methods in acoustical studies

4.3. Bulk wave propagation in anisotropic elastic media
4.3.2. The main equations for bulk waves
4.3.2.7. Visual representation for polarization of S- waves

‘.‘.“.‘.‘.“.‘#

© Copyright 2004. L. Braile. Permission
granted for reproduction and use of files and
animations for non-commercial uses



4. Theoretical methods in acoustical studies

4.3. Bulk wave propagation in anisotropic elastic media
4.3.2. The main equations for bulk waves
4.3.2.8. Remarks on speeds of bulk waves

In most cases speed of the longitudinal (or quasi longitudinal ) wave
exceeds speeds of the transverse waves (or quasi transverse), that is
why longitudinal waves are called P-waves (Primary waves)

But, there are some exceptions: TeO,, in which one of transverse waves
travels faster than the longitudinal

In isotropic materials at any admissible Lamé's constants A and p,
speed of transverse waves is (strictly) lower than speed of the
longitudinal wave.
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4.3. Bulk wave propagation in anisotropic elastic media
4.3.3. The main theorems for bulk waves
4.3.3.1. Theorem on existence of three bulk waves

For any direction of propagation

11 bulk waves do not depend upon frequency

While speed of propagation of these bulk waves can
coincide, their polarization vectors differ (and they
must be mutually orthogonal).



4. Theoretical methods in acoustical studies

4.3. Bulk wave propagation in anisotropic elastic media
4.3.3. The main theorems for bulk waves
4.3.3.2. Theorem on existence of the acoustic axes

An axis 1n an anisotropic medium i1s called “acoustic”, 1f
along it the longitudinal bulk wave can propagate

For any
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4.4. Surface acoustic waves
4.4.1. Boundary, interface, and Sommerfield’s conditions

, Traction-free surface:
Traction-free surface |
tVEV.C..vu‘, :O
X :.XO

Interface j Interface:

t  upper layer _ t lower layer (substrate)
A\ A%

u'Pper layer _ ulower layer (substrate)

‘7Attenuaﬁ°n at infinity ’ Sommerfield’s attenuation:
........................ / |Vu(x’) =o(|x’ _1), x| > oo




4. Theoretical methods in acoustical studies

4.4. Surface acoustic waves
4.4.2. Classification of surface acoustic waves
4.4.2.1. Rayleigh waves

A. Basic definition l y

Rayleigh surface wave means attenuating with depth
clastic wave with a plane wave front propagating on

a traction-free boundary of a half-space (substrate).

The pioneering Rayleigh work, where these waves
for the first time were described, appeared in 1885.
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4.4. Surface acoustic waves
4.4.2. Classification of surface acoustic waves
4.4.2.1. Rayleigh waves

B. The main properties

The main theorem

For a long time it was supposed that there can be anisotropic
materials (may be artificial), that possesses specific directions along
which Rayleigh waves cannot propagate. These hypothetical
directions where called “forbidden”.

But, in 1973-1976 Barnett and Lothe proved a theorem on existence
of Rayleigh wave for any anisotropic materials and any directions.

Another property

Rayleigh waves do not possess a dispersion (dependence
of frequency on speed).
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4.4. Surface acoustic waves
4.4.2. Classification of surface acoustic waves
4.4.2.1. Rayleigh waves
C. Role of Rayleigh waves in transmitting energy

These waves play a very important role in
transmitting the seismic energy and causing the
catastrophic destructions due to the seismic activity.

A relatively thin layer,
where the main wave
energy 1s concentrated

The amplitude of oscillations of Rayleigh wave
attenuates exponentially with depth



4. Theoretical methods in acoustical studies

4.4. Surface acoustic waves
4.4.2. Classification of surface acoustic waves
4.4.2.1. Rayleigh waves
D. Visualization of Rayleigh wave propagation
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4. Theoretical methods in acoustical studies

4.4. Surface acoustic waves
4.4.2. Classification of surface acoustic waves
4.4.2.1. Rayleigh waves
E. Visualization of particle movements

®1999, Daniel A. Bussell

© Copyright 2004. L. Braile. Permission
granted for reproduction and use of files and
animations for non-commercial uses
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4.4. Surface acoustic waves
4.4.2. Classification of surface acoustic waves
4.4.2.1. Rayleigh waves
F. Danger for structures
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4.4. Surface acoustic waves
4.4.2. Classification of surface acoustic waves
4.4.2.2. Lamb waves

A. Basic definition

+

Lamb waves propagate in a layer with either traction-free,
clamped or mixed boundary conditions imposed on the outer
surfaces of a layer.

These waves were discovered by Horace Lamb in 1917
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4.4. Surface acoustic waves
4.4.2. Classification of surface acoustic waves

4.4.2.2. Lamb waves
B. The main properties

 In contrast to Rayleigh waves, Lamb waves are highly
dispersive, that means the the phase speed depends upon
frequency or wavelength.

e There can be an infinite number of Lamb waves propagating
with the same phase speed and differing by the frequency.

« Lamb waves can travel with both sub, intermediate, and
supersonic speed.

After excitation, the most energy is transferred by the two lowest
modes (symmetric and flexural).
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4.4. Surface acoustic waves
4.4.2. Classification of surface acoustic waves
4.4.2.2. Lamb waves
C. Possible applications

Due to their highly dispersive nature these waves are quite often
used in NDT of possible defects in beams, plates, slabs, and rails.

Example

Rail head

Seismometer

BN Crack determination in rails
Evaluation of
defects 1n rails



4. Theoretical methods in acoustical studies

4.4. Surface acoustic waves
4.4.2. Classification of surface acoustic waves
4.4.2.3. Stoneley waves
A. Basic definition

Stoneley waves are the waves traveling on
an interface between two contacting half-
spaces.

These waves were discovered and described by Robert
Stoneley in 1924
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4.4. Surface acoustic waves
4.4.2. Classification of surface acoustic waves
4.4.2.3. Stoneley waves
B. The main properties

« As Rayleigh waves, Stoneley waves are not dispersive (their
phase speed does not depend upon frequency or wavelength.

* For Stoneley waves a uniqueness theorem can be proved,
stating that for arbitrary anisotropic and elastic halfspaces in a
contact, there can be no more than one Stoneley wave.

* Generally, Stoneley waves propagate with the subsonic speed.

Not any contacting halfspaces may have Stoneley wave.
Conditions for existence for two 1sotropic halfspaces in a
contact were obtained by Stoneley.



4. Theoretical methods in acoustical studies

4.4. Surface acoustic waves
4.4.2. Classification of surface acoustic waves
4.4.2.4. Love waves
A. Basic definition

Love waves are the waves traveling on an

interface between two contacting half-
spaces.

These waves were discovered and described by
Augustus Love in 1911
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4.4. Surface acoustic waves
4.4.2. Classification of surface acoustic waves
4.4.2.4. Love waves
B. The main properties

« As Lamb waves, Love waves are highly dispersive, that
means the their phase speed depends upon frequency or
wavelength.

 There can be an infinite number of Love waves propagating
with the same phase speed and differing by the frequency.

« Love waves can travel with the subsonic speeds for the
halfspace.

* It 1s assumed that Love wave attenuates with depth in the halfspace.

* Not any layer and the contacting halfspace may possess Love waves.

* Conditions for existence for both isotropic layer and halfspace were
obtained by Love.
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4.4. Surface acoustic waves
4.4.2. Classification of surface acoustic waves
4.4.2.4. Love waves
C. Visualization of Love waves
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4.4. Surface acoustic waves
4.4.2. Classification of surface acoustic waves
4.4.2.4. Love waves
D. Polarization of Love waves

<
<
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4.4. Surface acoustic waves
4.4.2. Classification of surface acoustic waves
4.4.2.5. SH waves
A. Basic definitions

No
person 1s

associated
with n

These waves travel in a layer or possibly
several contacting layers, and have the
transverse horizontal polarization.

As Lamb and Love waves, the SH waves are
highly dispersive.



4. Theoretical methods in acoustical studies

4.4. Surface acoustic waves
4.4.2. Classification of surface acoustic waves
4.4.2.5. SH waves
B. The main properties

« As Lamb and Love waves, SH waves are highly dispersive,
that means the their phase speed depends upon frequency or
wavelength.

 There can be an infinite number of SH waves propagating
with the same phase speed and differing by the frequency.

« SH waves can travel with both supersonic and subsonic
speed (the subsonic speed cannot be achieved 1n a layer with the
minimal shear bulk wave speed).
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4.4. Surface acoustic waves
4.4.2. Classification of surface acoustic waves
4.4.2.6. Speeds of bulk, Rayleigh, and Love waves

Generally (with some exceptions) the phase speeds satisfy the
following conditions:

bulk bulk *
Clongitudinal > Cransverse = CRayleigh > Clove

* Strictly speaking, there 1s no single value for Love waves, as
these waves are dispersive, and their speed satisfies the condition:

( bulk bulk

Ctransverse) < CLove < (Ctransverse)
layer substrate

[t 1s interesting to note, that there are following relations between

the transmitted energy:

Transverse Longitudinal
ELove - ERayleigh >> Ebulk - Ebulk
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4.4. Surface acoustic waves
4.4.3. Mathematical methods for analyzing surface acoustic waves
4.4.3.1. Representations for the displacement field

6 o
u(x,?) = Z f, (x")em(mx=ct)
k=1

x"=v-Xx, thus, it is a coordinate along vector v

f, 1s the unknown function specifying variation of diplacements
u 1s a displacement field

X 1S a space variable

t 1stime

r 1s the wave number (r =2n//, or r=w/c)

n 1s direction of propagation (n 1s the unit vector)

c 1s the phase speed
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4.4. Surface acoustic waves
4.4.3. Mathematical methods for analyzing surface acoustic waves
4.4.3.2. Christoffel equations

Substituting representation for the surface wave into differential
equations of motion, and performing necessary differentiation,
yield the Christoffel equations for surface waves:

[A(v)ai +2sym(v-C-n)d, +A(n) - pczl} £(x") =0

 Thus constructed equation is the matrix ODE of the second order

e The unique method of constructing the solution 1s to reduce this
equation to the matrix ODE of the first order.
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4.4. Surface acoustic waves
4.4.3. Mathematical methods for analyzing surface acoustic waves
4.4.3.3. Complex six-dimensional formalism
A. The main ODE in the complex six-dimensional form

Reducing to the ODE of the first order can be done by
introducing a new (vector-valued) function:

w(x')=0,f(x")

Then, the Christoffel equation becomes
o (1 0 I f
“\w) —A_l(v)-(A(n)—pczl) 2A7'(v)-sym(v-C-n) | | w

The last first-order ODE gives rise to the six-dimensional
complex formalism.
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4.4. Surface acoustic waves
4.4.3. Mathematical methods for analyzing surface acoustic waves
4.4.3.3. Complex six-dimensional formalism
B. The general solution

This gives 6 linearly independent six dimensional vector-
functions, allowing us to construct the general solution:

6 f !
86_dim(¥) = ch[ Kx) ]
k=1

W (x)

The unknown coefficients C, are defined by substituting this
solution into boundary, interface, and Sommerfield’s attenuation
conditions
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4.4. Surface acoustic waves

r
4.4.3.3. Complex six-dimensional form_

4.4.3. Mathematical methods for analyzing su
C. Structure of the solution

fk (x!) - mkell"'ykx
m,; 1s the amplitude of the partial wave

v, 1s the Christoffel parameter of the partial wave

The exponential term e’k
ensures either exponential growth (if Im(y, )<0),
or exponential decay (if Im(y,)>0),

or a periodic variation (if Im(y,)=0).
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4.4. Surface acoustic waves
4.4.3. Mathematical methods for analyzing surface acoustic waves
4.4.3.3. Complex six-dimensional formalism
D. History of constructing this formalism

Eshelby ~ 1956 ?

Stroh 1962  Development of the sextic formalism

Barnett & Lothe 1973-76 Analysis of Rayleigh waves by the sextic formalism
Chadwick & Smith 1977  Foundations of the sextic formalism

Alshits 1977  Applications to leakage waves

Chadwick & Ting 1987 Structure of the Barnett-Lothe tensors

Mase 1987  Rayleigh wave speed in transversely i1sotropic media

Ting & Barnett 1997  Classification of surface waves in crystals
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4.4. Surface acoustic waves
4.4.3. Mathematical methods for analyzing surface acoustic waves
4.4.3.4. An example of finding the solutions
A. “Lord Rayleigh” Rayleigh wave simulation software

Fw Lord Rayleigh Waves =1a]x]
Fle Wiew Window Help

D[e|e=(a] =) 2| <] olelel 1] Lo EiE] 2 2|
- e A i
=0]x] |
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. The walue equals to the ratio 4
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are eigenvalues of the
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a|
_J —.JITI ;'E:
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4.4. Surface acoustic waves
4.4.3. Mathematical methods for analyzing surface acoustic waves
4.4.3.4. An example of finding the solutions
B. Speed of Rayleigh waves for some materials

Material Syngony, Rayleigh wave
direction speed, m/sec

GaAs, Cubic, 2731.8
Gallium Arsenide [OO | ]

Ge, Cubic, 2929.9
Germanium [100]

InSb, Cubic, 1833.3
Indium Antimonide [001]
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4.4. Surface acoustic waves
4.4.4. Problem of “forbidden” directions for Rayleigh waves

For a long time the main problem related to Rayleigh wave
propagating was finding conditions at which such a wave
cannot propagate (problem of “forbidden’ directions).

Theorem of existence for Rayleigh waves:
Barnett and Lothe, 1973-76
Chadwick, 1975-85
Ting, 1983-96

But, in 1998-2002 a type of Non-Rayleigh waves was theoretically
observed and constructed explicitly.
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4.4. Surface acoustic waves
4.4.5. Anomalous solutions for Rayleigh waves
(Non-Rayleigh wave type waves)
4.4.5.1. Conditions for appearing the anomalous waves

These waves correspond to appearing the Jordan
blocks in a six-dimensional matrix associated with
the Christoffel equation.

. -
u(x,t)z(ml +m2x') orx ezr(nx ct)

*
M, s the generalized eigenvector



4. Theoretical methods in acoustical studies

4.4. Surface acoustic waves

4.4.5. Anomalous solutions for Rayleigh waves
(Non-Rayleigh wave type waves)
4.4.5.2. Jordan blocks

Marie Ennemond Camille

Jordan

1838 - 1922
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4. Theoretical methods in acoustical studies

4.5. Surface acoustic waves in multilayered media
4.5.1. Global matrix method

Constructing a “global” matrix combining all the equations
for the particular layers:

( A h
A4 4
A; A3+ = det(M)=0
A, /14+
K A4_ As J

<
I

Suggested by Leon Knopoff (1964)



4. Theoretical methods in acoustical studies

4.5. Surface acoustic waves in multilayered media
4.5.2. Transfer matrix method

Constructing the “transfer” matrix allowing us to express
boundary conditions at the bottom boundary in terms of the
coefficients of the uppermost layer

M=4(4) 4 -(4) o4 = det(M)=0

Suggested by Thomson (1950) and Haskell (1953)



4. Theoretical methods in acoustical studies

4.5. Surface acoustic waves in multilayered media
4.5.3. Role of multiprecision computations

Frequency, Hz

each layer 10
nanometers

10 layers,

SiC

2.0E+13

Dispersion curves

Love waves in a 10-layerd system

(double precision computations)

. . T 15E+13 - : \
Dispersion curves = ,{ \ \
- (8] M
Love waves in a 10—Iayere_d syster g 1.0E+13 \ \‘--ﬁ._
(multiprecision computations) 2 \ St —~
(] 4
L B.O0E+12 "y e ——
2.0E+13 - S e e
.3 \‘\\\\\\‘_‘ 0.0E+00 : =
1.5E+13 3.\ \ ——— 4000 4500 5000 5500 6000
\\ Phase speed (m/sec)
1.0E+13 - ——
\ N —eddse
5.0E+12 =
‘
0.0E+00 T
4000 4500 5000 5500 6000

Phase speed (m/sec)







5. Deterministic mathematical methods used for
predicting earthquakes

5.1. The main problem of predicting analysis

Analysis of a seismogram => conclusion on possibility of the event

i
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il 41607 signal 1, R=182[mkm/sec]
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5. Deterministic mathematical methods used for
predicting earthquakes

5.2. Fourier and wavelet analyses
5.2.1. Fourier transforms
5.2.1.1. Example of a function to be extrapolated

cos(?) at t€|0, n/2]

0.87
0.6
0.4

0.27

0.2 0.4 0.6 Q.8 1 1.2 1.4



5. Deterministic mathematical methods used for
predicting earthquakes

5.2. Fourier and wavelet analyses
5.2.1. Fourier transforms
5.2.1.2. Fourier analysis and synthesis

o0

f()~ > cpexp(2mikt/ p)
k=—0o0
[ lotp
¢ = — j f(r) exp(2nikt/ p) dr
p

)

Fourier series for the given function

()~ i 2(4ik — exp(2ikm)) exp(4i k)

n(16k* —1)

k=—0o0



5. Deterministic mathematical methods used for
predicting earthquakes

5.2. Fourier and wavelet analyses
5.2.1. Fourier transforms
5.2.1.3. Resulting function

Summation of Fourier series
for following initial function

cos(t) at te€|0, n/2]




5. Deterministic mathematical methods used for
predicting earthquakes

5.2. Fourier and wavelet analyses
5.2.1. Fourier transforms
5.2.1.4. Shortcomings

Fourier analysis (series) 1s inapplicable to predicting:
- non-periodic processes
- processes with the unknown period(s)
- processes with variable periods

1

0.8

0.6

0.4

0.2
-o.g 02 04 06 ©8 1\ 12 14
0.4
0.6
0.8] “
=11




5. Deterministic mathematical methods used for
predicting earthquakes

5.2. Fourier and wavelet analyses
5.2.2. Wavelet transforms
5.2.2.1. The main ideas

Heaviside step function Haar’s generic wavelet

)

1

0.4
0.2
2 _0_(2’, 2
-0.41
-0.61
-0.8]
-11

Wavelets

)

Vix0=2""y (2 1=h)

v, (6) = H(O)H(1-26)— HQ2t —1)H(1—?)



5. Deterministic mathematical methods used for
predicting earthquakes

5.2. Fourier and wavelet analyses
5.2.2. Wavelet transforms
5.2.2.2. Basic properties

Orthogonality:
Wk, (0dt =0, at j=m or k=n

Normality:

[(wx) =1



5. Deterministic mathematical methods used for
predicting earthquakes

5.2. Fourier and wavelet analyses
5.2.2. Wavelet transforms
5.2.2.3. Shortcomings and advantage

Shortcomings:
Wavelet analysis 1s inapplicable to predicting:
- non-periodic processes
- processes with the unknown period(s)
Advantage:
Wavelet analysis 1s well suited for processes with the
variable periods



5. Deterministic mathematical methods used for
predicting earthquakes

5.3. Lagrange and Newton interpolating polynomials
5.3.1. Basic idea (assumption of analyticity)

Assume that the function to be extrapolated 1s
in a vicinity of the endpoint, then such a function can
be expanded into convergent Taylor’s series:




5. Deterministic mathematical methods used for
predicting earthquakes

5.3. Lagrange and Newton interpolating polynomials
5.3.2. An example of cosine function

Our cosine function at the endpoint can be
expanded into Taylor’s series, which after
truncating to the first 10 terms gives the
following:

4 06 Q8 1 12 14 11
0.87
0.67
0.47
0.27

0
-0.27

-0.4+
-0.6 7
-0.87

-1




5. Deterministic mathematical methods used for
predicting earthquakes

5.3. Lagrange and Newton interpolating polynomials
5.3.3. Transition to interpolating polynomials

Unfortunately, in most of practical situations we
analytical expressions for the function to be interpolated

|

But, we can try to construct an , and
then find extrapolation by the interpolating polynomial



5. Deterministic mathematical methods used for
predicting earthquakes

5.3. Lagrange and Newton interpolating polynomials
5.3.4. Interpolating polynomial for cosine function

4 : . I
Lagrange interpolating

mmmd | polynomial of the 10-th
order

- J
4 06 Q‘.S I 12 14
11
0.8]
0.6
0.4
0.2
T

-0.21 t
-0.41
-0.67
-0.81




5. Deterministic mathematical methods used for
predicting earthquakes

5.4. Role of multiprecision calculations in the predicting analyses
5.4.1. An example of a two-term polynomial

P(x) = ¥ —10x”

Roots:

X(x=10)=0 = x=0, x,=10



5. Deterministic mathematical methods used for
predicting earthquakes

5.4. Role of multiprecision calculations in the predicting analyses
5.4.2. A small perturbation

P.(x)=x""-10.00001x

!

P.(10) =—10000

while

P(10)=0



5. Deterministic mathematical methods used for
predicting earthquakes

5.5. Example of predicting earthquakes in US

Prediction dated Dec 23 2003 is
based on the analysis of small
vibrations in the San-Simeon

region (CA)




6. Principles of creating seismic and
vibration barriers

6.1. Rough surface, as a barrier for Rayleigh waves

The main results:

If a free surface 1s not flat, but contains
some small periodic perturbations (of
Lyapunov class), then the corresponding

Alexei A Maradudin Rayleigh wave begins attenuate

The rate of attenuation depends upon
frequency of Rayleigh wave

Works on rough
surfaces for Rayleigh
waves 1976-78



6. Principles of creating seismic and
vibration barriers

6.2. Modifying surface layers for creating barriers against Love waves
6.2.1. The main principle (Actually, A.E.H.Love, 1911):

Love wave cannot propagate in an 1sotropic elastic layer
perfectly connected to the isotropic elastic halfspace, if
speed of propagation of bulk shear wave in the layer i1s
greater than in the substrate:

Ctmnsverse Ctmnsverse

( bulk )layer >( bulk )Substmte



6. Principles of creating seismic and
vibration barriers

6.2. Modifying surface layers for creating barriers against Love waves
6.2.2. Consequence

bulk _ ﬂ
Ctransverse o l ]
ayer ayer
& - lVlks*i/tl’ystmzte psubstrate
Love's principle ﬂ

A condition for a Love wave barrier



6. Principles of creating seismic and
vibration barriers

6.3. “Walls” in rocks and soils to prevent surface acoustic waves to
propagate
6.3.1. Principle of reflection
6.3.1.1. An example of the reflecting barrier

SEISMIC STAR

Kalmatron Corp. with its star-shaped protection
system

= ..« One of the obvious deficiencies:

For a relatively large wavelength of seismic
- % waves (10-6000m) the protected system should
=" be at least the same depth




6. Principles of creating seismic and
vibration barriers

6.3. “Walls” in rocks and soils to prevent surface acoustic waves to
propagate
6.3.1. Principle of reflection
6.3.1.2. Some problems in creating reflecting seismic barriers
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6. Principles of creating seismic and
vibration barriers

6.3. “Walls” in rocks and soils to prevent surface acoustic waves to
propagate
6.3.2. Principle of scattering
6.3.2.1. The main idea

The best results with respect to scattering can be achieved, if
inclusions are the closed pores.



6. Principles of creating seismic and
vibration barriers

6.3. “Walls” in rocks and soils to prevent surface acoustic waves to
propagate
6.3.2. Principle of scattering
6.3.2.2. Mathematical method

Two-scale asymptotic analysis

x — "slow" variable
X — "fast" wvariable
] Relation between variables

X =—x, e—>0
g




6. Principles of creating seismic and
vibration barriers

6.3. “Walls” in rocks and soils to prevent surface acoustic waves to
propagate
6.3.2. Principle of scattering
6.3.2.3. The main result

The best results with respect to the scattering
effect are achieved, when the inclusions are pores




7. Viscoelastic dampers for vibration and
seismic protection

7.1. Maxwell, Kelvin (Voigt), and standard elements
7.1.1. The main elements

Maxwell element Kelvin (Voigt) element  Standard linear

I_I.l



7. Viscoelastic dampers for vibration and
seismic protection

7.1. Maxwell and Kelvin (Voigt) elements
7.1.2. Differential equation for Kelvin’s element

mx+cx+kx=0
m 1S mass
¢ 1s viscosity of a dashpot

k 1s the spring rate



7. Viscoelastic dampers for vibration and
seismic protection

7.1. Maxwell and Kelvin (Voigt) elements
7.1.3. The general solution of the equation for Kelvin’s element
(free vibrations)

2
x:exp(—itjexp I k—(ij t
2m m \ 2m




7. Viscoelastic dampers for vibration and
seismic protection

7.1. Maxwell and Kelvin (Voigt) elements
7.1.4. Response to the oscillating loadings

Dependence of the amplitude
of oscillations upon frequency
of the applied loading for the
fixed damping system
(Kelvin’s element)




7. Viscoelastic dampers for vibration and
seismic protection

7.2. Damping in automotive industry
7.2.1. Design of McPherson struts and suspensions

Derived from the “Bible of Car Suspensions”




7. Viscoelastic dampers for vibration and
seismic protection

7.2. Damping in automotive industry
7.2.2. Example of unsuccessful suspension tuning

Derived from A. Kuznetsov diploma work Qj
at MAMI Moscow Technical University



7. Viscoelastic dampers for vibration and
seismic protection

7.3. Shock and vibration absorbers in railway engineering

Shock absorbing
resin-like
material

Lwischenlage ! Ruil Pad
Lwischenplatie / Baseplate Pad

Schwellenbesohlung / Sleeper Pad

Unterschotiermatic / Ballnst Mat
alternativ:

Vollfliichige Lagerung f Full
Surface Bearing

Troglager / Elastic Bearing for
Slab Track



7. Viscoelastic dampers for vibration and
seismic protection

7.4. Vibration absorbers in bridge engineering

Resin-polymer vibration
absorbers between span

beams and columns
(Bridge over the Rhone river,
Villeurbanne, France)




7. Viscoelastic dampers for vibration and
seismic protection

7.5. Shock and vibration absorbers in civil and industrial engineering
7.5.1. Dashpots (dampers) for seismic protection
7.5.1.1. Dashpots by “Taylor Devices” and “ Scott Forge”
A. Dashpot design

Dashpots by “Taylor
Devices” (NY, USA)

Dashpots by “Scot Forge” (IL, USA)

=

a 5
Parinership |both of Canadal



7. Viscoelastic dampers for vibration and
seismic protection

7.5. Shock and vibration absorbers in civil and industrial engineering
7.5.1. Dashpots (dampers) for seismic protection
7.5.1.1. Dashpots by “Taylor Devices” and “ Scott Forge”
B. “Torre Mayor” building equipped with dashpots

The 55-story Torre Mayor (Mexico
city), meaning "Big Tower," is the tallest
building in Latin America

On January 21, 2003, Mexico city
experienced a 7.6 magnitude earthquake,
but occupants of the building did not
suffer from this earthquake.




7. Viscoelastic dampers for vibration and
seismic protection

7.5. Shock and vibration absorbers in civil and industrial engineering
7.5.1. Dashpots (dampers) for seismic protection
7.5.1.1. Dashpots by “Taylor Devices” and “ Scott Forge”
C. Other structure equipped with dashpots

Hotel Woodland in Woodland California, USA

Notice, that dashpots are installed in the upper
part of the frame! '




7. Viscoelastic dampers for vibration and
seismic protection

7.5. Shock and vibration absorbers in civil and industrial engineering
7.5.1. Dashpots (dampers) for seismic protection
7.5.1.1. Dashpots by “Taylor Devices” and “ Scott Forge”
D. Some applications in bridge constructing

— Expansion Joint

Overall view of the collapse of the | c—
three central spans of the bridge at H‘D—H
Agua Caliente (Guatemala) caused | mm:mm;
by the 1976 earthquake '

Buaring

or Lock-Up Davice

.-_Ln.

500 kip LUDs for the Sidney Lanier Bridge (Geargia)




7. Viscoelastic dampers for vibration and
seismic protection

7.5. Shock and vibration absorbers in civil and industrial engineering
7.5.1. Dashpots (dampers) for seismic protection
7.5.1.1. Dashpots by “Taylor Devices” and “ Scott Forge”
E. Ultimate capacity of the dashpots

Capacity up to: 2,000,000 pounds (9072 KN)
Strokes of up to: 120 inches (3.048 m)
Temperatures: -40 +~+160 F (-40 =~ +70 C)

35-year warranty



7. Viscoelastic dampers for vibration and
seismic protection

7.5. Shock and vibration absorbers in civil and industrial engineering
7.5.1. Dashpots (dampers) for seismic protection
7.5.1.1. Dashpots by “Taylor Devices” and “ Scott Forge”
F. Concluding remark

The “Taylor Devices” position their dashpots, as dampers,
1.e. the systems composed of dashpots + springs (Kelvin
clements).

Possible explanation
PISTON RCD CYLINDER COMFRESSIBLE ACCUMULATOR
\ SILICONE FLUID / HOUSING

!

\ N .
% ; é;@ Valves 1n the

\ piston!
CHAMEBER 2 - \-— ROD MAKE-LP
ACCUMULATOR

SEAL RETAINER CHAMBER 1

SEAL PISTON HEAD

WITH CORIFICES

CONTROL WALVE



7. Viscoelastic dampers for vibration and
seismic protection

7.5. Shock and vibration absorbers in civil and industrial engineering
7.5.1. Dashpots (dampers) for seismic protection
7.5.1.2. Dashpots by “Robinson Seismic Limited”

ngs, each wei gh ng three-quarters of a
tonne, are put through a seismic-simulation fest rig




7. Viscoelastic dampers for vibration and
seismic protection

7.5. Shock and vibration absorbers in civil and industrial engineering
7.5.2. Friction Pendulum Seismic Isolation Bearings

7.5.2.1. The main principle

FEMDULLIM  AAQTION

w & IIJ”
1

SLIOING PEMOULLK MOTION

By the “Earthquake Protection Systems,
Inc.”, CA, USA

EPS Inc.

Basic Principles



7. Viscoelastic dampers for vibration and
seismic protection

7.5. Shock and vibration absorbers in civil and industrial engineering
7.5.2. Friction Pendulum Seismic Isolation Bearings
7.5.2.2. Examples in civil engineering

,mﬂm

m—

San Francisco International
Airport Terminal

by EPS Inc. US Court of Appeals



7. Viscoelastic dampers for vibration and
seismic protection

7.5. Shock and vibration absorbers in civil and industrial engineering
7.5.2. Friction Pendulum Seismic Isolation Bearings
7.5.2.3. Example in bridge construction

Friction Pendulum Bearing in the “American River Bridge”
at Lake Natoma in Folsom (CA)

by EPS Inc.



7. Viscoelastic dampers for vibration and
seismic protection

7.5. Shock and vibration absorbers in civil and industrial engineering
7.5.3. Elastomeric dampers
7.5.3.1. Examples of design

Plane rubber
(neoprene) mats

Plain bloch Load & Horizontal moveme nt M
dv Laminated
0y metal (lead)-rubber
| | mats
Laminated bearing Load & Horizontal movement

4V

L




7. Viscoelastic dampers for vibration and
seismic protection

7.5. Shock and vibration absorbers in civil and industrial engineering
7.5.3. Elastomeric dampers
7.5.3.2. Examples in civil and industrial engineering

-
458

Laminated Neoprene mats Solid neoprene mat for
for seismic protection by column bearing by Agom
AARP (UAE) International srl (Italy)



7. Viscoelastic dampers for vibration and

seismic protection

7.5. Shock and vibration absorbers in civil and industrial engineering

X

7.5.4. Software of analyzing vibrations

Frequency (Hz)

Damping Ratio:

[v

Floor Mass (tons) :
Stiffness (KI¥/m) :

Damping (EIN*s/m):

STRUCTURE PARAMETER S

First StoryAode  Second Story/Mode
|100

|90

|5000 |4DUD

; |0.?o |1.71

|30 |‘1D

|0.D10? |0.0194

STRUCTURE MODELS

Linear Model v || shsolute Motion

'~ | |E1 Ceniro Earthquake Acceleration (z)

=l

[ Nonlinear Damping Model
[~ Hysteretic (Boue-Wen) Model
[ Hysteretic (Bilinear) Model

First Story

Second Story

Involution Coefficient : |U.5

|D.5

Yield Displacement (m) : |0.02

|0.02

Post Yield Stiffness (KIN/m) : 1000

EXCITATION PARAMETERS

03485
10

RESPONSE PARAMETER S

- .

Maximum Amplitude (2) :
Sinusoid Frequency (Hz) :

Besponse Window (sec) :
Calculaie |

Reset Parameters |

|1DDD

Animate |

MULTIDISCIPLINARY CENTER FOR EARTHOUAKE ENGINEERING RESERRTH




7. Viscoelastic dampers for vibration and
seismic protection

7.6. Active shock absorbers
7.6.1. Vertical arrangement

Damping vibrating mass

The main 1dea 1s to
maintain the constant
force acting on the
upper mass to eliminate
its vibrations, by using
the so called ‘“active”
damping system

Auxiliary
reservoir

Auxiliary
reservoir
Applied vibrations ’




7. Viscoelastic dampers for vibration and

‘ SuonRIqIA pagMdyiE‘Ik ‘

seismic protection

7.6. Active shock absorbers

7.6.2. Horizontal arrangement

ssew sunesqia surdweq

In the  horizontal
arrangement there 1s
now need n
maintaining  constant
liquid or gas presser 1n
the chambers. The strut
will go freely.



7. Viscoelastic dampers for vibration and
seismic protection

7.6. Active shock absorbers
7.6.3. Analogy with the automotive industry

An  example of
“hydrolastic” suspension  Example of electronically An example of
proposed for Mini by Dr.  controlled (electromotor horizontal

Alex Moulton driven) suspension by displacement of
Bose Co. dampers by
“Racing for

Holland” Co.



7. Viscoelastic dampers for vibration and
seismic protection

7.7. Another principle of vibration absorbing
7.7.1. The basic idea

Damping vibrations can also be

. o : : Auxiliary
achieved by applying to the vibrating
mass some additional mass

Auxiliary

spring

connected with the first one with a
suitable spring element:

 Such systems are known as the 2 DOF.

The main

spring

* They lead to a coupled system of two ODE.

* This principle was suggested by
J. Ormondroyd and J.P. Den Hartog in 1928



7. Viscoelastic dampers for vibration and

seismic protection

7.7. Another principle of vibration absorbing
7.7.2. Visualization

¥}

-35

- 30

Remarks -3gl ol9%%, Dmpial A, Eu==all

The oscillating force is applied to the main mass

The left system vibrates with a frequency 0.67w,
The middle system vibrates with the resonance frequency !

The right system vibrates with the frequency 1.3 w,.



7. Viscoelastic dampers for
and seismic protection

7.7. Another principle of vibration absorbing
7.7.3. The main equations

Coupled system of two ODE
Fosin we {mz)'c'2 +k,x, =k (x, —x,) = F, sin(w?)
mX, +k,(x, —x,) =0

abhsorbher
Mmass

=5 displacement

TA 1T T
= 2 o + m o =1 oo
&
by
h
h
.
S
I
.
.
-
e
’
. i 4
il
4
[f




8. Some hints on preventing appearing
shock waves at building sites

8.1. Some observational data

Building site (Moscow, 2003) Cracks 1n an apartment house

Bt g




8. Some hints on preventing appearing
shock waves at building sites

8.2. Techniques for eliminating shock waves at building sites

Examples of the
drilled piles
(by “LayneGeo”)
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9. Concluding remarks

9.1. Brief summary
9.1.1. Seismic waves the main properties

Frequency range: 0.001 — 120Hz

Speed range: 100 — 6500 m/sec

Wavelength range: 2 — 6500 m



9. Concluding remarks

9.1. Brief summary
9.1.2. Seismic waves scales

Richter magnitude test scale:
Logarithmic scale (0 — 10)

The modified Mercalli intensity scale:
Scale of intensity 1in grades (I — XII)



9. Concluding remarks

9.1. Brief summary
9.1.3. Bulk waves the main properties

1. For any direction in an arbitrary anisotropic medium, there are
three bulk waves:
One (quasi) longitudinal and two (quasi) transverse waves

2. These waves can travel with (generally) different speeds
3. All bulk waves are not dispersing (wave speed does not depend
upon frequency)



9. Concluding remarks

9.1. Brief summary
9.1.4. Surface acoustic waves classification

Rayleigh waves (propagate in a halfspace)

Stoneley waves (propagate on an interface between two halfspaces)
Love waves (propagate in a layer and a halfspaces, have SH polarization)
Lamb waves (propagate in a layer)

EUE Y =

SH waves (propagate in a layer, have H polarization)



9. Concluding remarks

9.1. Brief summary
9.1.5. The main principles of deterministic predicting analysis

1. Approximating using some analytical bases functions

2. Obtaining the desired extrapolation

Presumably, the best suited for the functions with the
unknown periodicity and relatively short-time predictions are
interpolating (Lagrange or Newton) polynomials, provided
computations are done with the multiprecision arithmetic



9. Concluding remarks

9.1. Brief summary
9.1.6. The main principles of seismic wave protection

1. Modifying surface layers
a. Creating “rough” surfaces
b. Modifying physical properties of the surface layer

2. Creating seismic barriers
a. Barriers reflecting seismic waves
b. Barriers scattering wave energy

3. Installing dampers
a. Discrete dampers composed of a dashpot and a spring
b. Continuous type viscoelastic dampers (pads)



9. Concluding remarks

9.2. Directions for further studies

9.2.1. Theoretical studies of surface acoustic waves
(analytical methods);

9.2.2. Interaction of bulk or surface waves with barriers
(mainly FEM);

9.2.3. Scattering of elastic waves by inclusions and creating
wave scattering barriers (mainly FEM);

9.2.4. Vibro- and seismic damper engineering
(mainly ODE);

9.2.5. Methods and algorithms for predicting
(mainly numerical methods).
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