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Part I. General considerations



1.  Introduction1.  Introduction
1.1.   Position of acoustic methods in rock mechanics

1.1.1. Earth’s structure
1.1.1.1. Earth’s schematic structure

Earth’s Core: inner 
core Ø 1216 km  + 
outer core 2270 km

Mantle: 
2885 km

Crust:
7-40 km



1.  Introduction1.  Introduction
1.1.   Position of acoustic methods in rock mechanics

1.1.1. Earth’s structure
1.1.1.2. The non-acoustical method
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1.  Introduction1.  Introduction
1.1.   Position of acoustic methods in rock mechanics

1.1.2. Specimens for laboratory analyses

Kern samples Bore-drill head



1.  Introduction1.  Introduction
1.1.   Position of acoustic methods in rock mechanics

1.1.3. Some devices used for static measurements

INSTRON Testing  Machine

Suitable for both static and 
dynamic loadings

Cycle loading up to 20Hz, 
suitable for the fatigue 
strength limit determination

Suitable for both creep and 
relaxation tests 



1.  Introduction1.  Introduction
1.1.   Position of acoustic methods in rock mechanics

1.1.4. Experimental determination of mechanical properties of a kern

Kern:       Borehole No. 000-01bis

Site:         Villeurbanne Region, Central France

Coordinates:  45045´27´´(NL);  4047´07´´(Greenwich value)

Time:             16h 35min 27sec (GMT)

Temperature: +15.20C

Barometric pressure: 987mm mercury



1.  Introduction1.  Introduction
1.2.    Some experimental data concerning propagation of acoustic

waves in rocks and soils 
1.2.1.  Basic definitions

A wave propagating in a given material is called 
subsonic (supersonic), if its speed is below
(greater) than the corresponding speed of the 
longitudinal wave propagating in the same 
direction

A wave is called hyposonic (ultrasonic), if its 
oscillations in time are below (greater) than the 
audible frequencies:  20 – 20 000 Hz



1.  Introduction1.  Introduction
1.2.    Some experimental data concerning propagation of acoustic

waves in rocks and soils 
1.2.2.  Frequency range

10 - 120Hz

Most dangerous: 10-70Hz

Waves of artificial nature

0.001 - 50Hz

Most dangerous: 1-50Hz

Seismic waves of natural 
origin

Frequency rangeWave nature



1.  Introduction1.  Introduction
1.2.    Some experimental data concerning propagation of acoustic 

waves in rocks and soils 
1.2.3.  Speed range for longitudinal waves

4500 - 6500granite
3000 - 6000limestone
2000 - 5000slate (shale)
1430 - 1590water
100 - 1000sand
200 - 800soil

~800Bullet in the air
330 - 360air

Speed m/secMaterial



1.  Introduction1.  Introduction
1.2.    Some experimental data concerning propagation of acoustic

waves in rocks and soils 
1.2.4.  Wavelength ranges 

1.2.4.1. Wavelength range for seismic longitudinal  waves

90 - 6500granite
60 - 6000limestone
40 - 5000slate (shale)
29 - 1590water
2 - 1000sand
40 - 800  soil

Wavelength mMateriall=c/ω,
where

l is wavelength

c is speed

ω is frequency

Wavelengths for seismic longitudinal 
waves from 1 to 50 Hz



1.  Introduction1.  Introduction
1.2.    Some experimental data concerning propagation of acoustic

waves in rocks and soils 
1.2.4.  Wavelength ranges 

1.2.4.2. Remark for wavelength of seismic waves

l=c/ω,
where

l is wavelength

c is speed

ω is frequency

As was pointed out previously there can 
be seismic waves propagating with very 
low frequencies (0.01-1Hz), for such 
waves the corresponding wavelength can 
be sufficiently larger, than pointed in the 
previous table. Thus, for granites the 
wavelength of longitudinal waves can 
have up to 650 km.



1.  Introduction1.  Introduction

63 - 650granite
42 - 600limestone
28 - 500slate (shale)
20 - 159water
1 - 100sand
28 - 80  soil

Wavelength mMateriall=c/ω,
where

l is wavelength

c is speed

ω is frequency

Wavelengths for artificial 
longitudinal waves from 10 to 70 Hz

1.2.    Some experimental data concerning propagation of acoustic
waves in rocks and soils 
1.2.4.  Wavelength ranges 

1.2.4.3. Wavelength range for artificial longitudinal waves



1.  Introduction1.  Introduction

Charles Richter (1935) arbitrarily chose a magnitude 0 event to 
be an earthquake that would show a maximum combined 
horizontal displacement of 1 micrometer on a seismogram 
recorded using a Wood-Anderson torsion: 

1.3.    Seismic waves scales
1.3.1.  Richter magnitude scale

Remark

According to Richter scale, earthquakes of magnitude
<3 are not felt               (frequency is ~1000 per day)

5 - 6  can cause damage   (~800 per year)
7 - 8  serious damage       (  ~18 per year) 
8 - 9  severe  damage        (   ~1 per year)

>9  extreme damage       (  ~1 per 20 years)

ML = log10A(mm) + (Distance correction factor)



1.  Introduction1.  Introduction

The Modified Mercalli Intensity Scale (originated to seismologist 
Giuseppe Mercalli, 1902)  is commonly used by assigning numbers 
I – XII according to severity of the earthquake effects, so there may 
be many the modified Mercalli intensity values for each earthquake, 
depending upon distance of the epicenter. 

1.3.    Seismic waves scales
1.3.2.  Mercalli intensity scale

Remark

According to the Mercalli modified intensity scale:
I.   People do not feel any Earth movement. 

II. A few people might notice movement. 
III. Many people indoors feel movement. 
IV. Most people indoors feel movement. 

………………..
XII. Almost everything is destroyed. 



1.  Introduction1.  Introduction

According to Richter scale, the greatest recorded earthquake 
occurred  on 22d  May, 1960  in Chili (The Great Chilean 
Earthquake or Valdivia Earthquake). 

This earthquake was measured 9.5 by Richter scale.

1.3.    Seismic waves scales
1.3.3.  The greatest earthquake

The earthquake caused localized tsunami that hit the Chilean coast 
severely, with waves up to 25 meters high. The main tsunami ran 
through the Pacific Ocean and hit Hawaii, where waves as high as
10.7 meters high were recoded

Remark



2.  The main targets of acoustical studies2.  The main targets of acoustical studies

2.1. Analyses of physical and geometrical properties of
rocks and soils 

2.2. Observation of possible internal faults and cracks
2.3. Observation, analyses, and monitoring of the

underground water and oil reservoirs
2.4. Analyses of seismic (natural) and artificial

vibrations
2.5. Prediction of earthquakes 
2.6. Developing methods and technologies for surface

wave protection



3. Experimental techniques in acoustical studies3. Experimental techniques in acoustical studies

3.1.    Methods based on reflected acoustical waves 
3.1.1.  Basic principle

Transmitter

Receiver

Reflected waves



3. Experimental techniques in acoustical studies3. Experimental techniques in acoustical studies

3.1.    Methods based on reflected acoustical waves 
3.1.2.  History of the reflected acoustic wave measurements

Oklahoma is the birthplace of the reflection seismic technique of oil exploration. 
This geophysical method records reflected seismic waves as they travel through 
the earth, helping to find oil-bearing formations. It has been responsible for 
discovery of many of the world's largest oil and gas fields, containing billions of 
barrels of oil and trillions of cubic feet of natural gas. 

Pioneering research and development was led by Dr. J. C. Karcher, an Oklahoma 
physicist. The Arbuckle Mountains of Oklahoma were selected for a pilot survey 
of the technique and equipment, because an entire geologic section from the 
basal Permian to the basement mass of granite is exposed here. This survey 
followed limited testing in June, 1921 in the outskirts of Oklahoma City

The world's first reflection seismograph geologic section was measured on 
August 9, 1921 along Vines Branch, a few miles north of Dougherty (Oklahoma 
region)



3. Experimental techniques in acoustical studies 3. Experimental techniques in acoustical studies 
3.1.    Methods based on reflected acoustical waves 

3.1.3.  Emitters (transmitters) of acoustic waves

10-120Hz
10-30Hz

10-100Hz

10-70Hz
10-150Hz

Gained frequencies

UsedExisting sources 
of vibration

Widely usedVibro-platforms

UsedImpulse gas 
detonators

Widely usedFalling objects 
(rams)

Not used nowExplosions

CommentsMethod



3. Experimental techniques in acoustical studies3. Experimental techniques in acoustical studies
3.1.    Methods based on reflected acoustical waves 

3.1.4.  Registering devices for reflected waves

1. Seismographs, velocitometers, accelerometers

ADC 4-channel 
(Dataq DI 148U)

2. Analog-digital converter

Seismometer
(KS2000)



3. Experimental techniques in acoustical studies 3. Experimental techniques in acoustical studies 

3.1.    Methods based on reflected acoustical waves 
3.1.5. Remark on the reflected acoustical wave method 

Advantages:
+ Easy to receive and analyze experimental data
+ Relatively good accuracy for the first layer
+ Possibility to analyze layered media

Disadvantages:
- Generally, low accuracy for layered media
- Impossibility to analyze media with “hard” 

internal layers



3. Experimental techniques in acoustical studies 3. Experimental techniques in acoustical studies 

3.2. Methods based on surface acoustic waves 
3.2.1.  Basic principle



3. Experimental techniques in acoustical studies3. Experimental techniques in acoustical studies

3.2.    Methods based on acoustical surface waves 
3.2.2.  Use of natural seismic background

An example of a seismogram 
containing natural seismic 
background, due to 
propagating surface acoustic 
waves (Moscow, 2003)



3. Experimental techniques in acoustical studies 3. Experimental techniques in acoustical studies 
3.2.    Methods based on acoustical surface waves 

3.2.3. Use of artificially generated surface acoustic waves

10-120Hz
10-30Hz

10-100Hz

10-70Hz
10-150Hz

Gained frequencies

UsedExisting sources 
of vibration

Widely usedVibro-platforms

UsedImpulse gas 
detonators

Widely usedFalling objects 
(rams)

Not used nowExplosions

CommentsMethod



3. Experimental techniques in acoustical studies3. Experimental techniques in acoustical studies
3.2.    Methods based on acoustical surface waves 

3.2.4. Methods of registration

The same, as were used for methods based on the 
reflected waves 

Seismograph, 
velocitometer, 
accelerometer

Analog-digital 
converter



3. Experimental techniques in acoustical studies3. Experimental techniques in acoustical studies
3.2.    Methods based on acoustical surface waves 

3.2.5. Remark on the surface acoustical wave method

Advantages:
+ Possibility to use the natural seismic 

background
+ Possibility to analyze multilayered media
+ Possibility to analyze media with “hard” 

internal layers

Disadvantages:
- More complicated than the reflected wave 

method



Part II. Theoretical analyses



4. Theoretical methods in acoustical studies 4. Theoretical methods in acoustical studies 
4.1. Basic notations  

4.1.1.  The main operators of mathematical physics 

( ) ( )
1
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4. Theoretical methods in acoustical studies 4. Theoretical methods in acoustical studies 
4.1. Basic notations  

4.1.2.  Notion of stress and strain tensors

11 12 13

12 22 23

13 23 33

σ σ σ⎛ ⎞
⎜ ⎟≡ σ σ σ⎜ ⎟
⎜ ⎟σ σ σ⎝ ⎠

σ
11 12 13

12 22 23

13 23 33

ε ε ε⎛ ⎞
⎜ ⎟≡ ε ε ε⎜ ⎟
⎜ ⎟ε ε ε⎝ ⎠

ε



4. Theoretical methods in acoustical studies 4. Theoretical methods in acoustical studies 
4.1. Basic notations  

4.1.3.  Basic equations of elastodynamics   

( )

( )( )

, ,
1 1
2 2

or
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ij i j j i
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4. Theoretical methods in acoustical studies 4. Theoretical methods in acoustical studies 
4.2. Introduction to the anisotropic elasticity theory   

4.2.1.  The generalized Hook’s law written in a 3-dimensional
formalism    

3 3

1 1 Einstein's notatin

or

ijmn ijmn
ij mn mn

m n
C C

= =
σ = ε = ε

= ⋅ ⋅

∑ ∑

C

��	�


σ ε

Remark

Tensor  C is symmetric with respect to the outer 
pairs of indexes, and has 21 maximum independent 
components.



4. Theoretical methods in acoustical studies 4. Theoretical methods in acoustical studies 
4.2. Introduction to the anisotropic elasticity theory   

4.2.2. Six-dimensional formalism in anisotropic elasticity
4.2.2.1. Six-dimensional stress and strain vectors      

1 11

2 22

3 33

4 23

5 13

6 12

σ = σ⎛ ⎞
⎜ ⎟σ = σ⎜ ⎟
⎜ ⎟σ = σ

σ = ⎜ ⎟σ = σ⎜ ⎟
⎜ ⎟σ = σ
⎜ ⎟
σ = σ⎝ ⎠

G

1 11

2 22

3 33

4 23

5 13

6 12

ε = ε⎛ ⎞
⎜ ⎟ε = ε⎜ ⎟
⎜ ⎟ε = ε

ε = ⎜ ⎟ε = ε⎜ ⎟
⎜ ⎟ε = ε
⎜ ⎟
ε = ε⎝ ⎠

G



4. Theoretical methods in acoustical studies 4. Theoretical methods in acoustical studies 
4.2. Introduction to the anisotropic elasticity theory   

4.2.2. Six-dimensional formalism in anisotropic elasticity
4.2.2.2. The generalized Hook’s law in a 6-dim formalism   

6 6
ˆ

×σ = ⋅ εC GG

14 15 16

24 25 26

34 35 36

11 12 13

22 23

33
6 6

44

5

45 6

565

4

66

ˆ

C C C
C C

C
C

C
C C

C

C C C
C C C

C

C C C
×

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

C

Remark



4. Theoretical methods in acoustical studies 4. Theoretical methods in acoustical studies 
4.2. Introduction to the anisotropic elasticity theory   

4.2.3. Basic kinds of elastic anisotropy
4.2.3.1. Triclinic medium       

11 12 13 14 15 16

22 23 24 25 26

33 34 35 36
6 6

44 45 46

55 55

66

ˆ

C C C C C C
C C C C C

C C C C
C C C

C C
C

×

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

C

21 independent elastic constants, 
no planes of elastic symmetry

Remark



4. Theoretical methods in acoustical studies 4. Theoretical methods in acoustical studies 
4.2. Introduction to the anisotropic elasticity theory   

4.2.3. Basic kinds of elastic anisotropy
4.2.3.2. Monoclinic medium       

11 12 13 16

22 23 26

33 36
6 6

44 45

55

66

0 0
0 0
0 0ˆ

0
0

C C C C
C C C

C C
C C

C
C

×

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

C

13 independent elastic constants, 
one plane of elastic symmetry (plane < 12 >),
example: ore mineral “Colemanite”

Remark



4. Theoretical methods in acoustical studies 4. Theoretical methods in acoustical studies 
4.2. Introduction to the anisotropic elasticity theory   

4.2.3. Basic kinds of elastic anisotropy
4.2.3.3. Orthotropic (orthorhombic) medium    

11 12 13

22 23

33
6 6

44

55

66

0 0 0
0 0 0
0 0 0ˆ

0 0
0

C C C
C C

C
C

C
C

×

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

C

9 independent elastic constants, 
three plane of elastic symmetry,
example: ore mineral “Parkerite
”

Remark



4. Theoretical methods in acoustical studies 4. Theoretical methods in acoustical studies 
4.2. Introduction to the anisotropic elasticity theory   

4.2.3. Basic kinds of elastic anisotropy
4.2.3.4. Cubic symmetry       

11 12 12

11 12

11
6 6

44

44

44

0 0 0
0 0 0
0 0 0ˆ

0 0
0

C C C
C C

C
C

C
C

×

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

C

3 independent elastic constants, 
three planes of elastic symmetry,
example: ore mineral “Pyrite” (FeS2)

Remark



4. Theoretical methods in acoustical studies 4. Theoretical methods in acoustical studies 
4.2. Introduction to the anisotropic elasticity theory   

4.2.3. Basic kinds of elastic anisotropy
4.2.3.5. Transversely isotropic medium      

11 12 13

11 13

33
6 6

44

44

11 12

0 0 0
0 0 0
0 0 0ˆ

0 0
0

( ) / 2

C C C
C C

C
C

C
C C

×

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟

−⎝ ⎠

C

5 independent elastic constants, 
three planes of elastic symmetry,
a lot of composite materials are transversely isotropic

Remark



4. Theoretical methods in acoustical studies 4. Theoretical methods in acoustical studies 
4.2. Introduction to the anisotropic elasticity theory   

4.2.3. Basic kinds of elastic anisotropy
4.2.3.6. Isotropic medium       

11 12 12

11 12

12
6 6

11 12

11 12

11 12

0 0 0
0 0 0
0 0 0ˆ

( ) / 2 0 0
( ) / 2 0

( ) / 2

C C C
C C

C
C C

C C
C C

×

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟

= ⎜ ⎟−⎜ ⎟
⎜ ⎟−
⎜ ⎟

−⎝ ⎠

C

2 independent elastic constants, 
infinite number of planes of elastic symmetry,
a lot of polycrystalline and amorphous materials

Remark



4. Theoretical methods in acoustical studies 4. Theoretical methods in acoustical studies 
4.2. Introduction to the anisotropic elasticity theory   

4.2.4. Inequalities imposed on the elasticity tensor
4.2.4.1. Arbitrary elastic anisotropy        

Inequality ensuring positive (specific) deformation 
energy:

6 6

1
2

1 1 ˆ 0
2 2

A

×

≡ ⋅ ⋅ ⇒

⇒ ⋅⋅ ⋅ ⋅ = ε ⋅ ⋅ ε > ∀εC CG G G

ε σ > 0

ε ε

6 6 6 6 6 6 6 6
ˆ t

× × × ×= ⋅ ⋅C Q D Q

6 6 is a diagonal matrix×D

And, condition of positive deformation energy requires 
all the diagonal elements of matrix D6x6 to be positive

Where

Remark



4. Theoretical methods in acoustical studies 4. Theoretical methods in acoustical studies 
4.2. Introduction to the anisotropic elasticity theory   

4.2.4. Inequalities imposed on the elasticity tensor
4.2.4.2. Isotropic medium        

6 6

6 6 6 6

2
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2ˆ
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2
2

3 2
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2ˆ ˆ
2
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t
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× ×
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⎜ ⎟
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4. Theoretical methods in acoustical studies 4. Theoretical methods in acoustical studies 
4.2. Introduction to the anisotropic elasticity theory   

4.2.5. Remark on experimental determination of elastic constants 

A problem

How many “stones” are needed to 
prepare samples for defining 
elastic anisotropy and the 
corresponding elastic constants?



4. Theoretical methods in acoustical studies 4. Theoretical methods in acoustical studies 
4.3. Bulk wave propagation in anisotropic elastic media   

4.3.1. Introduction
4.3.1.1. Basic definitions

A wave is a periodic or quasi periodic movement in 
time and space.

Wave front is the geometrical set of points vibrating 
with the same phase.

Types of waves according to the wave front

Spherical waves

Cylindrical waves

Waves with a plane wave front

Definitions



4. Theoretical methods in acoustical studies 4. Theoretical methods in acoustical studies 
4.3. Bulk wave propagation in anisotropic elastic media   

4.3.1. Introduction
4.3.1.2. Remark on no mass transfer

At wave motion no mass transfer occurs.

This is applied to all the (linear) theories of acoustic 
waves.

Remark



4. Theoretical methods in acoustical studies 4. Theoretical methods in acoustical studies 
4.3. Bulk wave propagation in anisotropic elastic media   

4.3.2. The main equations for bulk waves 
4.3.2.1. Representation for a wave with the plane wave front          

( )( , ) ir ctt e ⋅ −= n xu x m

is a displacement field
  is a space variable

is time
is the amplitude (polarization) of the wave

 is the wave number ( 2 / , or /  )
 is direction of propagation (  is the unit vector)
  is the p

t

r r l r c

c

= π = ω

u
x

m

n n
hase speed

Where



4. Theoretical methods in acoustical studies 4. Theoretical methods in acoustical studies 
4.3. Bulk wave propagation in anisotropic elastic media   

4.3.2. The main equations for bulk waves 
4.3.2.2. Acoustic tensor          

( )2 0ir c⋅ ⋅ − ρ ⋅ =n C n I m

Definition for the acoustic tensor

Substituting representation for the plane wave front into equation 
of motion yields

( ) ≡ ⋅ ⋅A n n C n

The acoustic tensor can be constructed for any direction 
n, and it is symmetric and positive definite for any kind 
of elastic anisotropy

Remark



4. Theoretical methods in acoustical studies 4. Theoretical methods in acoustical studies 
4.3. Bulk wave propagation in anisotropic elastic media   

4.3.2. The main equations for bulk waves 
4.3.2.3. Christoffel equations          

( )2det ( ) 0c−ρ =A n I( )2( ) 0c−ρ ⋅ =A n I m

( )2
( ) 0t c⋅ − ρ ⋅ =A nQ D I Q

Remark

1

( ) 2

3

λ⎛ ⎞
⎜ ⎟= λ⎜ ⎟
⎜ ⎟λ⎝ ⎠

A nD , 1,2,3k
kc kλ
= =

ρ



4. Theoretical methods in acoustical studies 4. Theoretical methods in acoustical studies 
4.3. Bulk wave propagation in anisotropic elastic media   

4.3.2. The main equations for bulk waves 
4.3.2.4. Polarization          

1 1 1 2 2 2 3 3 3( ) = λ ⊗ + λ ⊗ + λ ⊗A n m m m m m m

where

, 1,2,3k k =m

Corollary

Are the mutually orthogonal and normal 
eigenvectors of the acoustical tensor

Polarization vectors corresponding to different 
eigenvalues of the acoustic tensor are just its 
eigenvectors



4. Theoretical methods in acoustical studies 4. Theoretical methods in acoustical studies 
4.3. Bulk wave propagation in anisotropic elastic media   

4.3.2. The main equations for bulk waves 
4.3.2.5. Classification of bulk waves according to polarization       

Definitions

A wave is called longitudinal (or P-wave)), if polarization 
m coincides with the direction of propagation n

A wave is called transverse (or S-wave), if polarization m
is orthogonal to the direction of propagation n

A wave is called quasi longitudinal, if the scalar product 
m · n > 0.

A wave is called quasi transverse, if the scalar product 
m · n < 0.



4. Theoretical methods in acoustical studies 4. Theoretical methods in acoustical studies 
4.3. Bulk wave propagation in anisotropic elastic media   

4.3.2. The main equations for bulk waves 
4.3.2.6. Visual representation for polarization of P- waves

© Copyright 2004.  L. Braile.  Permission 
granted for reproduction and use of files and
animations for non-commercial uses 



4. Theoretical methods in acoustical studies 4. Theoretical methods in acoustical studies 
4.3. Bulk wave propagation in anisotropic elastic media   

4.3.2. The main equations for bulk waves 
4.3.2.7. Visual representation for polarization of S- waves

© Copyright 2004.  L. Braile.  Permission 
granted for reproduction and use of files and
animations for non-commercial uses 



4. Theoretical methods in acoustical studies 4. Theoretical methods in acoustical studies 
4.3. Bulk wave propagation in anisotropic elastic media   

4.3.2. The main equations for bulk waves 
4.3.2.8. Remarks on speeds of bulk waves

In most cases speed of the longitudinal (or quasi longitudinal ) wave 
exceeds speeds of the transverse waves (or quasi transverse), that is 
why longitudinal waves are called P-waves (Primary waves)

But, there are some exceptions: TeO2, in which one of transverse waves 
travels faster than the longitudinal 

Remark 1

Remark 2
In isotropic materials at any admissible Lamé's constants λ and  µ, 
speed of transverse waves is (strictly) lower than speed of the 
longitudinal wave.



4. Theoretical methods in acoustical studies 4. Theoretical methods in acoustical studies 
4.3. Bulk wave propagation in anisotropic elastic media   

4.3.3. The main theorems for bulk waves  
4.3.3.1. Theorem on existence of three bulk waves

Theorem

For any direction of propagation n of an arbitrary anisotropic 
medium: 

(i) there exist three bulk waves, propagating with (generally) 
different phase speeds; and 

(ii) having mutually orthogonal polarization vectors; 
(iii) speeds of all bulk waves do not depend upon frequency

While speed of propagation of these bulk waves can 
coincide, their polarization vectors differ (and they 
must be mutually orthogonal).

Remark



4. Theoretical methods in acoustical studies 4. Theoretical methods in acoustical studies 
4.3. Bulk wave propagation in anisotropic elastic media   

4.3.3. The main theorems for bulk waves  
4.3.3.2. Theorem on existence of the acoustic axes

Theorem

For any anisotropic medium, there exist at least three 
different acoustic axes.

Definition

An axis in an anisotropic medium is called “acoustic”, if 
along it the longitudinal bulk wave can propagate.



4. Theoretical methods in acoustical studies 4. Theoretical methods in acoustical studies 
4.3. Bulk wave propagation in anisotropic elastic media 

4.3.4. Specific energy of bulk waves    
4.3.4.1. Kinetic energy

Definition

21
2kinE = ρ u�

Corollary

2 2 21 1
2 2kinE r c= ρ ⋅ = ρ ⋅u u m m� �

1 21
2

=
= ρω

Substituting representation for the bulk wave 
into definition for kinetic energy, yields

Remark

Thus, kinetic energy does not depend upon 
the phase speed c.



4. Theoretical methods in acoustical studies 4. Theoretical methods in acoustical studies 
4.3. Bulk wave propagation in anisotropic elastic media 

4.3.4. Specific energy of bulk waves    
4.3.4.2. Elastic (potential) energy           

Definition
1
2elastE = ⋅⋅ε σ

Corollary

( )
( )

2

2

1 1 1
2 2 2

1 ( )
2

elastE r

r

= ⋅⋅ ⋅⋅ ∇ ⋅⋅ ⋅⋅∇ = ⋅ ⋅ ⋅ ⋅ =

= ⋅ ⋅

A n

C u C u m n C n m

m A n m


����
ε ε =

Substituting representation for the bulk wave 
into definition for elastic energy, yields



4. Theoretical methods in acoustical studies 4. Theoretical methods in acoustical studies 
4.3. Bulk wave propagation in anisotropic elastic media 

4.3.4. Specific energy of bulk waves    
4.3.4.3. Theorem on elastic energy for bulk waves                        

elast kinE E=

Theorem

( )

2

2

1 ( )
2

but

( ) 0

elastE r

c

= ⋅ ⋅

−ρ ⋅ =

m A n m

A n I m

Proof

2

2

( )
now

( )

c

c

⋅ = ρ

⋅ ⋅ = ρ ⋅

A n m m

m A n m m m
1=



4. Theoretical methods in acoustical studies 4. Theoretical methods in acoustical studies 
4.4. Surface acoustic waves  

4.4.1. Boundary, interface, and Sommerfield’s conditions     

Traction-free surface

Interface

Attenuation at infinity

Traction-free surface:

Interface:

Sommerfield’s attenuation:

0
0x x′=≡ ⋅ ⋅ ⋅∇ =t C uν ν

+
( )

( )

upper layer lower layer substrate

upper layer lower layer substrate

=

=

t t

u u

−ν ν

1( ) ( ),x o x x−′ ′ ′∇ = →∞u



4. Theoretical methods in acoustical studies 4. Theoretical methods in acoustical studies 
4.4. Surface acoustic waves  

4.4.2. Classification of surface acoustic waves      
4.4.2.1. Rayleigh waves

A.  Basic definition           

Rayleigh surface wave means attenuating with depth 
elastic wave with a plane wave front  propagating on 
a traction-free boundary of a half-space (substrate). 

Definition

n
ν

Remark
The pioneering Rayleigh work, where these waves
for the first time were described, appeared in 1885.      



4. Theoretical methods in acoustical studies 4. Theoretical methods in acoustical studies 
4.4. Surface acoustic waves  

4.4.2. Classification of surface acoustic waves      
4.4.2.1. Rayleigh waves

B.  The main properties        

For a long time it was supposed that there can be anisotropic 
materials (may be artificial), that possesses specific directions along 
which Rayleigh waves cannot propagate. These hypothetical 
directions where called “forbidden”.
But, in 1973-1976 Barnett and Lothe proved a theorem on existence
of Rayleigh wave for any anisotropic materials and any directions.

Another property

The main theorem

Rayleigh waves do not possess a dispersion (dependence 
of frequency on speed).



4. Theoretical methods in acoustical studies 4. Theoretical methods in acoustical studies 
4.4. Surface acoustic waves  

4.4.2. Classification of surface acoustic waves      
4.4.2.1. Rayleigh waves

C.  Role of Rayleigh waves in transmitting energy 

These waves play a very important role in 
transmitting the seismic energy and causing the 
catastrophic destructions due to the seismic activity.      

A relatively thin layer, 
where the main wave 
energy is concentrated

The amplitude of oscillations of Rayleigh wave 
attenuates exponentially with depth 

Remark



4. Theoretical methods in acoustical studies 4. Theoretical methods in acoustical studies 
4.4. Surface acoustic waves  

4.4.2. Classification of surface acoustic waves      
4.4.2.1. Rayleigh waves

D.  Visualization of Rayleigh wave propagation

© Copyright 2004.  L. Braile.  Permission 
granted for reproduction and use of files and
animations for non-commercial uses 



4. Theoretical methods in acoustical studies 4. Theoretical methods in acoustical studies 
4.4. Surface acoustic waves  

4.4.2. Classification of surface acoustic waves      
4.4.2.1. Rayleigh waves

E.  Visualization of particle movements

© Copyright 2004.  L. Braile.  Permission 
granted for reproduction and use of files and
animations for non-commercial uses 



4. Theoretical methods in acoustical studies 4. Theoretical methods in acoustical studies 
4.4. Surface acoustic waves  

4.4.2. Classification of surface acoustic waves      
4.4.2.1. Rayleigh waves

F. Danger for structures



4. Theoretical methods in acoustical studies 4. Theoretical methods in acoustical studies 
4.4. Surface acoustic waves  

4.4.2. Classification of surface acoustic waves      
4.4.2.2. Lamb waves 

A. Basic definition           

Definition
Lamb waves propagate in a layer with either traction-free, 
clamped or mixed boundary conditions imposed on the outer 
surfaces of a layer.  

These waves were discovered  by Horace Lamb in 1917

Remark

n
ν



4. Theoretical methods in acoustical studies 4. Theoretical methods in acoustical studies 
4.4. Surface acoustic waves  

4.4.2. Classification of surface acoustic waves      
4.4.2.2. Lamb waves 

B. The main properties        

• In contrast to Rayleigh waves, Lamb waves are highly 
dispersive, that means the the phase speed depends upon 
frequency or wavelength.
• There can be an infinite number of Lamb waves propagating 
with the same phase speed and differing by the frequency.
• Lamb waves can travel with  both sub,  intermediate, and 
supersonic speed. 

Remark

After excitation, the most energy is transferred by the two lowest 
modes (symmetric and flexural).



4. Theoretical methods in acoustical studies 4. Theoretical methods in acoustical studies 
4.4. Surface acoustic waves  

4.4.2. Classification of surface acoustic waves      
4.4.2.2. Lamb waves 

C. Possible applications

Example

Due to their highly dispersive nature these waves are quite often 
used in NDT of possible defects in beams, plates, slabs, and rails.

Evaluation of 
defects in rails

Seismometer

Rail head

Accelerometer on 
Rail

Crack determination in rails



4. Theoretical methods in acoustical studies 4. Theoretical methods in acoustical studies 
4.4. Surface acoustic waves  

4.4.2. Classification of surface acoustic waves      
4.4.2.3. Stoneley waves 

A. Basic definition

Remark

Stoneley waves are the waves traveling on 
an interface between two contacting half-
spaces. 

Accelerometer on 
Rail

n
ν

Definition

These waves were  discovered and described by Robert 
Stoneley in 1924



4. Theoretical methods in acoustical studies 4. Theoretical methods in acoustical studies 
4.4. Surface acoustic waves  

4.4.2. Classification of surface acoustic waves      
4.4.2.3. Stoneley waves 

B. The main properties

Remark

Accelerometer on 
Rail

Not any contacting halfspaces may have Stoneley wave. 
Conditions for existence for two isotropic halfspaces in a 
contact were obtained by Stoneley.

• As Rayleigh waves, Stoneley waves are not dispersive (their 
phase speed does not depend upon frequency or wavelength.
• For Stoneley waves a uniqueness theorem can be proved, 
stating that for arbitrary anisotropic and elastic halfspaces in a 
contact, there can be no more than one Stoneley wave.
• Generally, Stoneley waves propagate with the subsonic speed. 



4. Theoretical methods in acoustical studies 4. Theoretical methods in acoustical studies 
4.4. Surface acoustic waves  

4.4.2. Classification of surface acoustic waves      
4.4.2.4. Love waves 

A. Basic definition

Remark

Love waves are the waves traveling on an 
interface between two contacting half-
spaces. 

Accelerometer on 
Rail

Definition

These waves were  discovered and described by 
Augustus Love in 1911

n

ν

/⊗ :



4. Theoretical methods in acoustical studies 4. Theoretical methods in acoustical studies 
4.4. Surface acoustic waves  

4.4.2. Classification of surface acoustic waves      
4.4.2.4. Love waves 

B. The main properties

Remarks

Accelerometer on 
Rail

• As Lamb waves, Love waves are highly dispersive, that 
means the their phase speed depends upon frequency or 
wavelength.
• There can be an infinite number of Love waves propagating 
with the same phase speed and differing by the frequency.
• Love waves can travel with the subsonic speeds for the 
halfspace. 

• It is assumed that Love wave attenuates with depth in the halfspace.
• Not any layer and the contacting halfspace may possess Love waves.
• Conditions for existence for both isotropic layer and halfspace were 
obtained by Love.



4. Theoretical methods in acoustical studies 4. Theoretical methods in acoustical studies 
4.4. Surface acoustic waves  

4.4.2. Classification of surface acoustic waves      
4.4.2.4. Love waves 

C. Visualization of Love waves

Accelerometer on 
Rail

© Copyright 2004.  L. Braile.  Permission 
granted for reproduction and use of files and
animations for non-commercial uses 



4. Theoretical methods in acoustical studies 4. Theoretical methods in acoustical studies 
4.4. Surface acoustic waves  

4.4.2. Classification of surface acoustic waves      
4.4.2.4. Love waves 

D. Polarization of Love waves

Accelerometer on 
Rail

SUBSTRATE

LAYER



4. Theoretical methods in acoustical studies 4. Theoretical methods in acoustical studies 
4.4. Surface acoustic waves  

4.4.2. Classification of surface acoustic waves      
4.4.2.5. SH waves 

A. Basic definitions

Accelerometer on 
Rail

No 
person is 

associated 
with

Definition

These waves travel in a layer or possibly 
several contacting layers, and have the 
transverse horizontal polarization.   
Remark

As Lamb and Love waves, the SH waves are 
highly dispersive.

n

ν

/⊗ :



4. Theoretical methods in acoustical studies 4. Theoretical methods in acoustical studies 
4.4. Surface acoustic waves  

4.4.2. Classification of surface acoustic waves      
4.4.2.5. SH waves 

B. The main properties

Accelerometer on 
Rail

• As Lamb and Love waves, SH waves are highly dispersive, 
that means the their phase speed depends upon frequency or 
wavelength.
• There can be an infinite number of SH waves propagating 
with the same phase speed and differing by the frequency.
• SH waves can travel with both supersonic and subsonic 
speed (the subsonic speed cannot be achieved in a layer with the
minimal shear bulk wave speed). 



4. Theoretical methods in acoustical studies 4. Theoretical methods in acoustical studies 
4.4. Surface acoustic waves  

4.4.2. Classification of surface acoustic waves      
4.4.2.6. Speeds of bulk, Rayleigh, and Love waves              

Generally (with some exceptions) the phase speeds satisfy the 
following conditions:

*bulk bulk
longitudinal transverse Rayleigh Lovec c c c> > >
Remark

* Strictly speaking, there is no single value for Love waves, as
these waves are dispersive, and their speed satisfies the condition:

( ) ( )bulk bulk
transverse Love transverselayer substrate

c c c< <

LongitudinalTransverse
Love Rayleigh bulk bulkE E E E>>∼ ∼

It is interesting to note, that there are following relations between 
the transmitted energy:
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4.4. Surface acoustic waves  

4.4.3. Mathematical methods for analyzing surface acoustic waves    
4.4.3.1. Representations for the displacement field                     

6
( )

1
( , ) ( ) ir ct

k
k

t x e ⋅ −

=

′= ∑ n xu x f

Where

, thus, it is a coordinate along vector 
 is the unknown function specifying variation of diplacements
is a displacement field

  is a space variable
is time

  is the wave number ( 2 / , or /  

k

x

t
r r l r c

′ = ⋅

= π = ω

x
f
u
x

ν ν

)
 is direction of propagation (  is the unit vector)
  is the phase speedc

n n



4. Theoretical methods in acoustical studies 4. Theoretical methods in acoustical studies 
4.4. Surface acoustic waves  

4.4.3. Mathematical methods for analyzing surface acoustic waves    
4.4.3.2. Christoffel equations              

Substituting representation for the surface wave into differential 
equations of motion, and performing necessary differentiation, 
yield the Christoffel equations for surface waves: 

( )2 2( ) 2sym ( ) ( ) 0x x c x′ ′⎡ ⎤ ′∂ + ⋅ ⋅ ∂ + −ρ ⋅ =⎣ ⎦A C n A n I fν ν

Remark

• Thus constructed equation is the matrix ODE of the second order

• The unique method of constructing the solution is to reduce this
equation to the matrix ODE of the first order.



4. Theoretical methods in acoustical studies 4. Theoretical methods in acoustical studies 
4.4. Surface acoustic waves  

4.4.3. Mathematical methods for analyzing surface acoustic waves    
4.4.3.3. Complex six-dimensional formalism 

A. The main ODE in the complex six-dimensional form    

Reducing to the ODE of the first order can be done by 
introducing a new (vector-valued) function: 

( ) ( )xx x′′ ′= ∂w f
Then, the Christoffel equation becomes

( ) ( )1 2 1( ) ( ) 2 ( ) symx c′ − −

⎛ ⎞⎛ ⎞ ⎛ ⎞⎜ ⎟∂ = ⋅⎜ ⎟ ⎜ ⎟⎜ ⎟− ⋅ −ρ − ⋅ ⋅ ⋅⎝ ⎠ ⎝ ⎠⎝ ⎠

0 If f
A A n I A C nw wν ν ν

Remark

The last first-order ODE is known as the six-dimensional 
complex formalism.
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4.4. Surface acoustic waves  

4.4.3. Mathematical methods for analyzing surface acoustic waves    
4.4.3.3. Complex six-dimensional formalism 

B. The general solution           

The last first-order gives 6 linearly independent six dimensional 
vector-functions, allowing us to construct the general solution:

6

6 dim
1

( )
( )

( )
k

k
kk

x
x C

x−
=

′⎛ ⎞
′ = ⎜ ⎟′⎝ ⎠
∑

f
g

w

Remark

The unknown coefficients Ck are defined by substituting this 
solution into boundary, interface, and Sommerfield’s attenuation
conditions
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4.4. Surface acoustic waves  

4.4.3. Mathematical methods for analyzing surface acoustic waves    
4.4.3.3. Complex six-dimensional formalism 

C. Structure of the solution      

( ) kir x
k kx e ′γ′ =f m

Where

is the amplitude of the partial wave
is the Christoffel parameter of the partial wave

k

kγ
m

The exponential term
ensures either exponential growth  (if  Im( )<0),

                         or exponential decay    (if  Im( )>0),
                         or a periodic variation  (if  Im(

kir x

k

k

e ′γ

γ
γ
γ )=0).

                
k

Remark
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4.4. Surface acoustic waves  

4.4.3. Mathematical methods for analyzing surface acoustic waves    
4.4.3.3. Complex six-dimensional formalism 

D. History of constructing this formalism                            

Eshelby ~ 1956                           ?

Stroh 1962 Development of the sextic formalism

Barnett & Lothe 1973-76 Analysis of Rayleigh waves by the sextic formalism

Chadwick & Smith1977 Foundations of the sextic formalism

Alshits 1977 Applications to leakage waves

Chadwick & Ting 1987 Structure of the Barnett-Lothe tensors

Mase 1987 Rayleigh wave speed in transversely isotropic media

Ting & Barnett 1997 Classification of surface waves in crystals  



4. Theoretical methods in acoustical studies 4. Theoretical methods in acoustical studies 
4.4. Surface acoustic waves  

4.4.3. Mathematical methods for analyzing surface acoustic waves    
4.4.3.4. An example of finding the solutions

A. “Lord Rayleigh” Rayleigh wave simulation software    



4. Theoretical methods in acoustical studies 4. Theoretical methods in acoustical studies 
4.4. Surface acoustic waves  

4.4.3. Mathematical methods for analyzing surface acoustic waves    
4.4.3.4. An example of finding the solutions

B. Speed of Rayleigh waves for some materials                 

1833.3Cubic,
[001]

InSb,
Indium Antimonide

2929.9Cubic,
[100]

Ge,
Germanium

2731.8Cubic, 
[001]

GaAs,
Gallium Arsenide

Rayleigh wave 
speed, m/sec

Syngony, 
direction

Material
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4.4. Surface acoustic waves  

4.4.4. Problem of “forbidden” directions for Rayleigh waves    

For a long time the main problem related to Rayleigh wave 
propagating was finding conditions at which such a wave 
cannot propagate (problem of “forbidden” directions).

Do such “forbidden” directions exist?

Theorem of existence for Rayleigh waves:
Barnett and Lothe, 1973-76  
Chadwick,              1975-85
Ting,                       1983-96 

But, in 1998-2002 a type of Non-Rayleigh waves was theoretically 
observed and constructed explicitly. 
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4.4. Surface acoustic waves  

4.4.5. Anomalous solutions for Rayleigh waves 
(Non-Rayleigh wave type waves) 
4.4.5.1. Conditions for appearing the anomalous waves 

Structure of a Non-Rayleigh type wave

These waves correspond to appearing the Jordan 
blocks in a six-dimensional matrix associated with 
the Christoffel equation.

( )* ( )
1 2( , ) ir x ir ctt x e e′γ ⋅ −′= + n xu x m m

Where

*
2m is the generalized eigenvector
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4.4. Surface acoustic waves  

4.4.5. Anomalous solutions for Rayleigh waves 
(Non-Rayleigh wave type waves) 
4.4.5.2. Jordan blocks 

Marie Ennemond Camille

Jordan

1838 - 1922

0 1 0
0 0 1
0 0 0

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

J
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4.5. Surface acoustic waves  in multilayered media

4.5.1. Global matrix method 

1

1 2

2 3

3 4

4 5

det( ) 0

A
A A

M MA A
A A

A A

+

− +

− +

− +

−

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟≡ ⇒ =
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

Originator

Suggested by Leon Knopoff (1964)

The main idea

Constructing a “global” matrix combining all the equations 
for the particular layers:
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4.5. Surface acoustic waves  in multilayered media

4.5.2. Transfer matrix method 

( ) ( )1 1

1 1 2 2 ... det( ) 0nM A A A A A M
− −+ − + − +≡ ⋅ ⋅ ⋅ ⋅ ⋅ ⇒ =

Originator

Suggested by Thomson (1950) and Haskell (1953)

The main idea

Constructing the “transfer” matrix allowing us to express 
boundary conditions at the bottom boundary in terms of the 
coefficients of the uppermost layer
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4.5. Surface acoustic waves  in multilayered media

4.5.3. Role of multiprecision computations 

SiC

Si3N4

Silicon 
Monocrystal

[001]

10 layers,
each layer 10 
nanometers

Dispersion curves 
Love waves in a 10-layered system 

(multiprecision computations)
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Part III. Engineering applications



5. Deterministic mathematical methods used for 5. Deterministic mathematical methods used for 
predicting earthquakespredicting earthquakes

5.1. The main problem of predicting  analysis 

Analysis of a seismogram ⇒ conclusion on possibility of the event



5. Deterministic mathematical methods used for 5. Deterministic mathematical methods used for 
predicting earthquakespredicting earthquakes

5.2. Fourier and wavelet analyses 
5.2.1. Fourier transforms

5.2.1.1. Example of a function to be extrapolated

[ ]cos( ) at 0, / 2t t∈ π

0

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1 1.2 1.4t



5.2. Fourier and wavelet analyses 
5.2.1. Fourier transforms

5.2.1.2. Fourier analysis and synthesis

5. Deterministic mathematical methods used for 5. Deterministic mathematical methods used for 
predicting earthquakespredicting earthquakes

( ) exp(2 / )k
k

f t c i kt p
∞

=−∞
π∑∼

0

0

1 ( ) exp(2 / )
t p

k
t

c f i k p d
p

+

= τ π τ τ∫

2
2(4 exp(2 ))( ) exp(4 )

(16 1)k

ik ikf t i kt
k

∞

=−∞

− π
π −

∑∼

Where

Fourier series for the given function 



5.2. Fourier and wavelet analyses 
5.2.1. Fourier transforms

5.2.1.3. Resulting function

5. Deterministic mathematical methods used for 5. Deterministic mathematical methods used for 
predicting earthquakespredicting earthquakes

0

0.2

0.4

0.6

0.8

-3 -2 -1 1 2 3t

Summation of Fourier series 
for following initial function

[ ]cos( ) at 0, / 2t t∈ π



5.2. Fourier and wavelet analyses 
5.2.1. Fourier transforms

5.2.1.4. Shortcomings

Fourier analysis (series) is inapplicable to predicting:
- non-periodic processes
- processes with the unknown period(s)
- processes with variable periods

-1
-0.8
-0.6
-0.4
-0.2

0

0.2
0.4
0.6
0.8
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0.2 0.4 0.6 0.8 1 1.2 1.4t
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5.2. Fourier and wavelet analyses 
5.2.2. Wavelet transforms

5.2.2.1. The main ideas

Heaviside step function

0
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0.8

-4 -2 2 4
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-4 -2 2 4

Haar’s generic wavelet

( ) ( ) (1 2 ) (2 1) (1 )H t H t H t H t H tψ = − − − −

Wavelets

/2
, ( ) 2 (2 )j j
j k Ht t kψ = ψ −

5. Deterministic mathematical methods used for 5. Deterministic mathematical methods used for 
predicting earthquakespredicting earthquakes



5.2. Fourier and wavelet analyses 
5.2.2. Wavelet transforms

5.2.2.2. Basic properties

Normality:

, ,( ) ( ) 0, at orj k m nt t dt j m k nψ ψ = ≠ ≠∫
Orthogonality:

( )2, ( ) 1j k t dtψ =∫

5. Deterministic mathematical methods used for 5. Deterministic mathematical methods used for 
predicting earthquakespredicting earthquakes



5.2. Fourier and wavelet analyses 
5.2.2. Wavelet transforms

5.2.2.3. Shortcomings and advantage

Shortcomings:
Wavelet analysis is inapplicable to predicting:

- non-periodic processes
- processes with the unknown period(s) 

Advantage:
Wavelet analysis is well suited for processes with the
variable periods

5. Deterministic mathematical methods used for 5. Deterministic mathematical methods used for 
predicting earthquakespredicting earthquakes



5.3. Lagrange and Newton interpolating polynomials  
5.3.1. Basic idea (assumption of analyticity)

Assume that the function to be extrapolated is analytic
in a vicinity of the endpoint, then such a function can 
be expanded into convergent Taylor’s series:

( )

0

( )( ) ( )
!

k
kb

b
k

f tf t t t
k

∞

=
= −∑
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5.3. Lagrange and Newton interpolating polynomials  
5.3.2. An example of cosine function

Our cosine function at the endpoint  π/2 can be 
expanded into Taylor’s series, which after 
truncating to the first 10 terms gives the 
following:0
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5.3. Lagrange and Newton interpolating polynomials  
5.3.3. Transition to interpolating polynomials

Unfortunately, in most of practical situations we do not know
analytical expressions for the function to be interpolated

But, we can try to construct an interpolating polynomial, and 
then find extrapolation by the interpolating polynomial

5. Deterministic mathematical methods used for 5. Deterministic mathematical methods used for 
predicting earthquakespredicting earthquakes



5.3. Lagrange and Newton interpolating polynomials  
5.3.4. Interpolating polynomial for cosine function

Lagrange interpolating 
polynomial of the 10-th 
order
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predicting earthquakespredicting earthquakes



5.4. Role of multiprecision calculations in the predicting analyses   
5.4.1. An example of a two-term polynomial

10 9( ) 10P x x x= −

Roots:

9
1 2( 10) 0 0, 10x x x x⇒− = = =

5. Deterministic mathematical methods used for 5. Deterministic mathematical methods used for 
predicting earthquakespredicting earthquakes



5.4. Role of multiprecision calculations in the predicting analyses   
5.4.2. A small perturbation

10 9( ) 1 000010.P x x xε = −

(10) 10000Pε = −

while
(10) 0P =

5. Deterministic mathematical methods used for 5. Deterministic mathematical methods used for 
predicting earthquakespredicting earthquakes



5.5. Example of predicting earthquakes in US   

Prediction dated Dec 23 2003 is 
based on the analysis of small 
vibrations in the San-Simeon 
region (CA)

5. Deterministic mathematical methods used for 5. Deterministic mathematical methods used for 
predicting earthquakespredicting earthquakes



6. Principles of creating seismic and  6. Principles of creating seismic and  
vibration barriers vibration barriers 

6.1. Rough surface, as a barrier for Rayleigh waves            

Alexei A.Maradudin

Works on rough 
surfaces for Rayleigh 

waves 1976-78

The main results: 

If a free surface is not flat, but contains 
some small periodic perturbations (of 
Lyapunov class), then the corresponding 
Rayleigh wave begins attenuate

The rate of attenuation depends upon 
frequency of Rayleigh wave



6. Principles of creating seismic and  6. Principles of creating seismic and  
vibration barriers vibration barriers 

6.2. Modifying surface layers for creating barriers against Love waves    
6.2.1. The main principle (Actually, A.E.H.Love, 1911):

Love wave cannot propagate in an isotropic elastic layer 
perfectly connected to the isotropic elastic halfspace, if 
speed of propagation of bulk shear wave in the layer is 
greater than in the substrate:

( ) ( )layer substratebulk bulk
transverse transversec c>



6. Principles of creating seismic and  6. Principles of creating seismic and  
vibration barriers vibration barriers 

6.2. Modifying surface layers for creating barriers against Love waves    
6.2.2. Consequence

&
Love's principle

bulk
transversec

⎫µ
= ⎪ρ ⎪⎪

⎬
⎪
⎪
⎪⎭

layer layer

substrate substrate
µ ρ

>
µ ρ

A condition for a Love wave barrier



6. Principles of creating seismic and  6. Principles of creating seismic and  
vibration barriers vibration barriers 

6.3. “Walls” in rocks and soils to prevent surface acoustic waves to
propagate    
6.3.1.  Principle of reflection

6.3.1.1. An example of the reflecting barrier

Kalmatron Corp. with its star-shaped protection 
system

One of the obvious deficiencies: 

For a relatively large wavelength of seismic 
waves (10-6000m) the protected system should 
be at least the same depth



6. Principles of creating seismic and  6. Principles of creating seismic and  
vibration barriers vibration barriers 

6.3. “Walls” in rocks and soils to prevent surface acoustic waves to 
propagate    
6.3.1.  Principle of reflection

6.3.1.2. Some problems in creating reflecting seismic barriers 



6. Principles of creating seismic and  6. Principles of creating seismic and  
vibration barriers vibration barriers 

6.3. “Walls” in rocks and soils to prevent surface acoustic waves to
propagate    
6.3.2.  Principle of scattering

6.3.2.1. The main idea

The best results with respect to scattering can be achieved, if 
inclusions are the closed pores.



6. Principles of creating seismic and  6. Principles of creating seismic and  
vibration barriers vibration barriers 

6.3. “Walls” in rocks and soils to prevent surface acoustic waves to 
propagate    
6.3.2.  Principle of scattering

6.3.2.2. Mathematical method

Two-scale asymptotic analysis
"slow" variable
"fast" variable

x
X

−
−

Relation between variables

1 , 0X x= ε→
ε



6. Principles of creating seismic and  6. Principles of creating seismic and  
vibration barriers vibration barriers 

6.3. “Walls” in rocks and soils to prevent surface acoustic waves to
propagate    
6.3.2.  Principle of scattering

6.3.2.3. The main result 

The best results with respect to the scattering 
effect are achieved, when the inclusions are pores



7. Viscoelastic dampers for vibration and 7. Viscoelastic dampers for vibration and 
seismic protection  seismic protection  

7.1.  Maxwell, Kelvin (Voigt), and standard elements     
7.1.1.  The main elements

Kelvin (Voigt) elementMaxwell element Standard linear



7. Viscoelastic dampers for vibration and 7. Viscoelastic dampers for vibration and 
seismic protection  seismic protection  

7.1.  Maxwell and Kelvin (Voigt) elements     
7.1.2.  Differential equation for Kelvin’s element

0
is mass

is viscosity of a dashpot
is the spring rate

mx cx kx
m
c
k

+ + =�� �



7. Viscoelastic dampers for vibration and 7. Viscoelastic dampers for vibration and 
seismic protection  seismic protection  

7.1.  Maxwell and Kelvin (Voigt) elements     
7.1.3.  The general solution of the equation for Kelvin’s element 

(free vibrations)

2
exp exp

2 2
c k cx t i t
m m m

⎛ ⎞⎛ ⎞ ⎛ ⎞⎜ ⎟= − −⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠
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7. Viscoelastic dampers for vibration and 7. Viscoelastic dampers for vibration and 
seismic protection  seismic protection  

7.1.  Maxwell and Kelvin (Voigt) elements     
7.1.4.  Response to the oscillating loadings

-0.2

0

0.2

0.4

1 2 3 4 5

Dependence of the amplitude 
of oscillations upon frequency 
of the applied loading for the 
fixed damping system 
(Kelvin’s element)



7. Viscoelastic dampers for vibration and 7. Viscoelastic dampers for vibration and 
seismic protection  seismic protection  

7.2.  Damping in automotive industry
7.2.1. Design of McPherson struts and suspensions

Derived from the “Bible of Car Suspensions”



7. Viscoelastic dampers for vibration and 7. Viscoelastic dampers for vibration and 
seismic protection  seismic protection  

7.2.  Damping in automotive industry
7.2.2. Example of unsuccessful suspension tuning

Derived from A. Kuznetsov diploma work 
at  MAMI Moscow Technical University



7. Viscoelastic dampers for vibration and 7. Viscoelastic dampers for vibration and 
seismic protection  seismic protection  

7.3.  Shock and vibration absorbers in railway engineering

Shock absorbing 
resin-like 
material



7. Viscoelastic dampers for vibration and 7. Viscoelastic dampers for vibration and 
seismic protection  seismic protection  

7.4.  Vibration absorbers in bridge engineering

Resin-polymer vibration 
absorbers between span 
beams and columns 
(Bridge over the Rhone river, 
Villeurbanne, France)



7. Viscoelastic dampers for vibration and 7. Viscoelastic dampers for vibration and 
seismic protection  seismic protection  

7.5.  Shock and vibration absorbers in civil and industrial engineering
7.5.1. Dashpots (dampers) for seismic protection 

7.5.1.1. Dashpots by “Taylor Devices” and “Scott Forge”
A. Dashpot design 

Dashpots by “Scot Forge” (IL, USA)
Dashpots by “Taylor 
Devices” (NY, USA)



7. Viscoelastic dampers for vibration and 7. Viscoelastic dampers for vibration and 
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7.5.  Shock and vibration absorbers in civil and industrial engineering
7.5.1. Dashpots (dampers) for seismic protection 

7.5.1.1. Dashpots by “Taylor Devices” and “Scott Forge”
B. “Torre Mayor” building equipped with dashpots 

The 55-story Torre Mayor (Mexico 
city), meaning "Big Tower," is the tallest 
building in Latin America

On January 21, 2003, Mexico city  
experienced a 7.6 magnitude earthquake, 
but occupants of the building did not 
suffer from this earthquake. 



7. Viscoelastic dampers for vibration and 7. Viscoelastic dampers for vibration and 
seismic protection  seismic protection  

7.5.  Shock and vibration absorbers in civil and industrial engineering
7.5.1. Dashpots (dampers) for seismic protection 

7.5.1.1. Dashpots by “Taylor Devices” and “Scott Forge”
C. Other structure equipped with dashpots  

Hotel Woodland in Woodland California, USA

Notice, that dashpots are installed in the upper 
part of the frame!



7. Viscoelastic dampers for vibration and 7. Viscoelastic dampers for vibration and 
seismic protection  seismic protection  

7.5.  Shock and vibration absorbers in civil and industrial engineering
7.5.1. Dashpots (dampers) for seismic protection 

7.5.1.1. Dashpots by “Taylor Devices” and “Scott Forge”
D. Some applications in bridge constructing  

Overall view of the collapse of the 
three central spans of the bridge at
Agua Caliente (Guatemala) caused 
by the 1976 earthquake 



7. Viscoelastic dampers for vibration and 7. Viscoelastic dampers for vibration and 
seismic protection  seismic protection  

7.5.  Shock and vibration absorbers in civil and industrial engineering
7.5.1. Dashpots (dampers) for seismic protection 

7.5.1.1. Dashpots by “Taylor Devices” and “Scott Forge”
E. Ultimate capacity of the dashpots

Capacity up to:   2,000,000 pounds   (9072 KN)

Strokes of up to:         120 inches     (3.048 m)

Temperatures:       -40 ÷ +160 F        (-40 ÷ +70 C)

35-year warranty



7. Viscoelastic dampers for vibration and 7. Viscoelastic dampers for vibration and 
seismic protection  seismic protection  

7.5.  Shock and vibration absorbers in civil and industrial engineering
7.5.1. Dashpots (dampers) for seismic protection 

7.5.1.1. Dashpots by “Taylor Devices” and “Scott Forge”
F. Concluding remark

The “Taylor Devices” position their dashpots, as dampers, 
i.e. the systems composed of dashpots + springs (Kelvin 
elements).

Possible explanation

Valves in the 
piston!
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7.5.  Shock and vibration absorbers in civil and industrial engineering
7.5.1. Dashpots (dampers) for seismic protection 

7.5.1.2. Dashpots by “Robinson Seismic Limited”

A bridge in Wellington, 
New Zealand with dashpots



7. Viscoelastic dampers for vibration and 7. Viscoelastic dampers for vibration and 
seismic protection  seismic protection  

7.5.  Shock and vibration absorbers in civil and industrial engineering
7.5.2. Friction Pendulum Seismic Isolation Bearings

7.5.2.1. The main principle

By the “Earthquake Protection Systems, 
Inc.”, CA, USA

EPS Inc.



7. Viscoelastic dampers for vibration and 7. Viscoelastic dampers for vibration and 
seismic protection  seismic protection  

7.5.  Shock and vibration absorbers in civil and industrial engineering
7.5.2. Friction Pendulum Seismic Isolation Bearings

7.5.2.2. Examples in civil engineering

San Francisco International 
Airport Terminal

US Court of Appeals by EPS Inc.



7. Viscoelastic dampers for vibration and 7. Viscoelastic dampers for vibration and 
seismic protection  seismic protection  

7.5.  Shock and vibration absorbers in civil and industrial engineering
7.5.2. Friction Pendulum Seismic Isolation Bearings

7.5.2.3. Example in bridge construction

Friction Pendulum Bearing in the “American River Bridge”
at Lake Natoma in Folsom (CA) 

by EPS Inc.



7. Viscoelastic dampers for vibration and 7. Viscoelastic dampers for vibration and 
seismic protection  seismic protection  

7.5.  Shock and vibration absorbers in civil and industrial engineering
7.5.3. Elastomeric dampers 

7.5.3.1. Examples of design

Plane rubber 
(neoprene) mats

Laminated 
metal (lead)-rubber 

mats
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7.5.  Shock and vibration absorbers in civil and industrial engineering
7.5.3. Elastomeric dampers 

7.5.3.2. Examples in civil and industrial engineering

Laminated Neoprene mats 
for seismic protection by 

AARP (UAE)

Solid neoprene mat for 
column bearing by Agom

International srl (Italy)
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7.5.  Shock and vibration absorbers in civil and industrial engineering
7.5.4. Software of analyzing vibrations 



7. Viscoelastic dampers for vibration and 7. Viscoelastic dampers for vibration and 
seismic protection  seismic protection  
7.6.  Active shock absorbers 

7.6.1.   Vertical arrangement

Damping vibrating mass

Applied vibrations

Auxiliary 
reservoir

Auxiliary 
reservoir

Dashpot

The main idea is to 
maintain the constant 
force acting on the 
upper mass to eliminate 
its vibrations, by using 
the so called “active” 
damping system



7. Viscoelastic dampers for vibration and 7. Viscoelastic dampers for vibration and 
seismic protection  seismic protection  
7.6.  Active shock absorbers 

7.6.2.  Horizontal arrangement

In the horizontal 
arrangement there is 
now need in 
maintaining constant 
liquid or gas presser in 
the chambers. The strut 
will go freely.
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seismic protection  seismic protection  
7.6.  Active shock absorbers 

7.6.3.    Analogy with the automotive industry

An example of  
“hydrolastic” suspension 
proposed for Mini by Dr. 
Alex Moulton 

Example of electronically 
controlled (electromotor 
driven) suspension by 
Bose Co.

An example of 
horizontal 
displacement of 
dampers by 
“Racing for   
Holland” Co. 



7. Viscoelastic dampers for vibration and 7. Viscoelastic dampers for vibration and 
seismic protection  seismic protection  
7.7.  Another principle of vibration absorbing

7.7.1.    The basic idea

Damping vibrations can also be 
achieved by applying to the vibrating 
mass some additional mass 
connected with the first one with a 
suitable spring element:

Auxiliary  
mass

Auxiliary  
spring

The main  
mass

The main  
spring

Remarks
• Such systems are known as the 2 DOF. 

• They lead to a coupled system of two ODE.

•  This principle was suggested by 
J. Ormondroyd and J.P. Den Hartog in 1928



7. Viscoelastic dampers for vibration and 7. Viscoelastic dampers for vibration and 
seismic protection  seismic protection  
7.7.  Another principle of vibration absorbing 

7.7.2.    Visualization

Remarks

The oscillating force is applied to the main mass

The left system vibrates with a frequency 0.67ω0

The middle system vibrates with the resonance frequency ω0!

The right system vibrates with the frequency 1.3 ω0.



7. Viscoelastic dampers for vibration 7. Viscoelastic dampers for vibration 
and seismic protection  and seismic protection  

7.7.  Another principle of vibration absorbing 
7.7.3.    The main equations 

2 2 2 2

1 1 1 1

1 1 2 0

2

( ) sin(
( ) 0

)
m x k
m x k x k x F t

x
x
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Coupled system of two ODE



8. Some hints on preventing appearing 8. Some hints on preventing appearing 
shock waves at building sites   shock waves at building sites   

8.1. Some observational data

Building site (Moscow, 2003) Cracks in an apartment house



8. Some hints on preventing appearing 8. Some hints on preventing appearing 
shock waves at building sites   shock waves at building sites   

8.2. Techniques for eliminating shock waves at   building sites 

Diesel hummer 
for driving piles

Vibratory hummer 
for driving piles

Examples of the 
drilled piles

(by “LayneGeo”)
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9. Concluding remarks9. Concluding remarks

9.1. Brief summary
9.1.1. Seismic waves the main properties 

Frequency range: 0.001 – 120Hz  
( 1 – 70Hz are the most dangerous)

Speed range: 100 – 6500 m/sec

Wavelength range: 2 – 6500 m 



9. Concluding remarks9. Concluding remarks

9.1. Brief summary
9.1.2. Seismic waves scales

Richter magnitude test scale:
Logarithmic scale (0 – 10)

The modified Mercalli intensity scale:
Scale of intensity in grades (I – XII)



9. Concluding remarks9. Concluding remarks

9.1. Brief summary
9.1.3. Bulk waves the main properties 

The main theorem:
1. For any direction in an arbitrary anisotropic medium, there are 

three bulk waves:
One (quasi) longitudinal and two (quasi) transverse waves

2. These waves can travel with (generally) different speeds
3. All bulk waves are not dispersing (wave speed does not depend 

upon frequency) 



9. Concluding remarks9. Concluding remarks

9.1. Brief summary
9.1.4. Surface acoustic waves classification

There are the following principle types of  SAW:

1. Rayleigh waves (propagate in a halfspace)
2. Stoneley waves (propagate on an interface between two halfspaces)
3. Love waves (propagate in a layer and a halfspaces, have SH polarization)
4. Lamb waves (propagate in a layer)
5. SH waves (propagate in a layer, have H polarization)



9. Concluding remarks9. Concluding remarks

9.1. Brief summary
9.1.5. The main principles of deterministic predicting analysis

1. Approximating using some analytical bases functions
2. Obtaining the desired extrapolation

Presumably, the best suited for the functions with the 
unknown periodicity and relatively short-time predictions are 
interpolating (Lagrange or Newton) polynomials, provided 
computations are done with the multiprecision arithmetic 

Remark



9. Concluding remarks9. Concluding remarks

9.1. Brief summary
9.1.6. The main principles of seismic wave protection

1. Modifying surface layers
a. Creating “rough” surfaces
b. Modifying physical properties of the surface layer

2. Creating seismic barriers
a. Barriers reflecting seismic waves
b. Barriers scattering wave energy

3. Installing dampers
a. Discrete dampers composed of a dashpot and a spring
b. Continuous type viscoelastic dampers (pads)
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9.2. Directions for further studies

9.2.1. Theoretical studies of surface acoustic waves 
(analytical methods);

9.2.2. Interaction of bulk or surface waves with barriers 
(mainly FEM);

9.2.3. Scattering of elastic waves by inclusions and creating
wave scattering barriers (mainly FEM);

9.2.4. Vibro- and seismic damper engineering 
(mainly ODE);

9.2.5. Methods and algorithms for predicting 
(mainly numerical methods).
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9.3. The concluding note           
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