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Structure of the presentation

Part I 

A brief description of the Institute for Problems in 
Mechanics (IPM) of Russian Academy of Sciences

Part II
An introduction to terminology and basic problems in 

the Surface Acoustic Wave (SAW) studies

Part III

Some recent results in SH- and Love wave analyses
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Part IPart I

Institute for Problems in Institute for Problems in 
Mechanics Mechanics 

of of 
Russian Academy of Russian Academy of 

SciencesSciences
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History of the IPMHistory of the IPM

The first director of the former Institute of Mechanics 
Professor B.G. Galerkin ~1938

The first director of the Institute for Problems in 
Mechanics of Russian Academy of Sciences 
A.Y. Ishlinskiy 1965-1990
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History of the IPMHistory of the IPM

The following persons  worked in IPM in different years

Professor L.A. Goldenveizer (theory of shells, asymptotic methods)

Professor N.V. Zvolinskij    (theory of surface waves, analysis of tsunami)

Professor G.I. Barenblatt      (fracture mechanics, hydrodynamics)

Professor O.A. Olejnik          (differential equations, homogenization) 
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IPMIPM
Laboratory of Wave DynamicsLaboratory of Wave Dynamics

The head of Laboratory Professor I.V. Simonov

Fracture mechanics and  Astromechanics
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IPMIPM
Laboratory of Wave DynamicsLaboratory of Wave Dynamics
The main directions: 

Analyses of bodies collisions and aftereffects: 
Fragmentation, Cavern-and-crack formation, Penetration
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IPMIPM
Laboratory of Wave DynamicsLaboratory of Wave Dynamics

Experimental study: 

Penetrating ability of different arrow-heads

The winner with respect to the penetrating ability



3/13/2009

Part IIPart II

Introduction to the Surface Introduction to the Surface 
Acoustic Wave analysesAcoustic Wave analyses
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The main types of The main types of 
Surface Acoustic WavesSurface Acoustic Waves
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Rayleigh wavesRayleigh waves
Basic definitions Basic definitions 

Pioneering Rayleigh’s work  (1885) where these 
waves were described.      

Rayleigh surface wave means attenuating with depth 
elastic wave with a plane wave front  propagating on 
a traction-free boundary of a half-space.     

n
ν
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Rayleigh waves,Rayleigh waves,
their role in seismic activity their role in seismic activity 

These waves play a very important role in 
transmitting the seismic energy and causing the 
catastrophic destructions due to the seismic activity.
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Rayleigh waves,Rayleigh waves,
danger for structures danger for structures 
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Rayleigh waves,Rayleigh waves,
Comparing different seismic wavesComparing different seismic waves

LongitudinalTransverse
Love Rayleigh bulk bulkc c c c< < <

1.    Speed of propagation (phase speed)

2.    Transmitted elastic energy

LongitudinalTransverse
Love Rayleigh bulk bulkE E E E>>∼ ∼
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Rayleigh waves Rayleigh waves 
Problem of finding theProblem of finding the
secular equationsecular equation

For an isotropic medium the secular equation 
(Rayleigh equation) is:
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where

What is the secular equation for an anisotropic medium?
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Rayleigh waves Rayleigh waves 
Problem of finding theProblem of finding the
secular equationsecular equation

For an arbitrary anisotropic medium the secular 
equation has not been found yet (2006)

Related problem

Currie, 1979

Taziev,   1989

Destrade, 2001

Ting, 2002, 2003
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The related problem:The related problem:
How many independent How many independent 
constants have an arbitraryconstants have an arbitrary
anisotropic  elasticityanisotropic  elasticity tensor?tensor?

The new problem:
How many independent constants has a rotation in R6?
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Rayleigh waves Rayleigh waves 
The main practical problemThe main practical problem

For a long time the main problem related 
to Rayleigh wave propagating on an arbitrary 
anisotropic half-space was finding  conditions 
at which such a wave cannot propagate 
(Problem of “forbidden” directions).

Do “forbidden directions” exist?
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RayeleighRayeleigh waves waves 
The main practical problemThe main practical problem

Theorem of existence for Rayleigh waves:

Barnett and Lothe, 1973-76  
Chadwick,              1975-85
Ting,                       1983-96

In 1998-2002 a type of Non-Rayleigh waves was 
observed and constructed explicitly. 
Such a wave corresponds to appearing the Jordan 
blocks in a six-dimensional matrix associated with 
the Christoffel equation.
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A remark on Jordan blocks A remark on Jordan blocks 
appearing in the matrix analysisappearing in the matrix analysis

Marie Ennemond Camille
Jordan

1838 - 1922
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Lamb wavesLamb waves
Basic definitions Basic definitions 

These waves, discovered by Horace Lamb 
(1917), can propagate in a layer with either traction-
free, clamped or mixed boundary conditions, 
imposed on the outer surfaces of a layer.  

n

ν
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Lamb wavesLamb waves
Basic properties Basic properties 

In contrast to Rayleigh waves, Lamb waves are 
highly dispersive, that means the the phase speed 
depends upon frequency or wavelength.

There can be an infinite number of Lamb waves 
propagating with the same phase speed and differing 
by the frequency.

Lamb waves can travel with  both sub,  intermediate, 
and supersonic speed. 

An interesting physical observation:

After excitation, the most energy is transferred by the two lowest 
modes (symmetric and flexural).
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Lamb wavesLamb waves
The main problems The main problems 

Presumably, the main problem related to the 
genuine Lamb wave propagation lies in constructing 
solutions for an anisotropic layer having arbitrary 
elastic anisotropy:

Deriving explicit secular equation(s) for the phase 
speed and frequency (for different speed intervals 
there may be needed different equations)

Obtaining and analyzing solutions for waves 
related to appearing the Jordan blocks in a six-
dimensional matrix formalism.
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StoneleyStoneley waveswaves
DefinitionDefinition

These waves were  
described by Robert 
Stoneley (1924), and they 
are waves traveling on an 
interface between two 
contacting half-spaces. 

n

ν
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StoneleyStoneley waveswaves
Basic propertiesBasic properties

Stoneley waves exponentially attenuate 
with depth in both half-spaces, and in this 
respect resemble Rayleigh waves.    

Both Rayleigh and Stoneley waves are not 
dispersive.

Remark

For contacting isotropic half-spaces conditions of existence 
were found by Stoneley.

Conditions for existence of Stoneley waves propagating in 
anisotropic half-spaces are not established (2006).
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RobertRobert StoneleyStoneley
A fact from biographyA fact from biography
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Love wavesLove waves
Definition Definition 

These waves originate to Augustus Love  
(1911), who for the first time obtained a 
solution for a wave traveling in a system 
consisted of a layer and a contacting half-
space.     

n

ν

/⊗ :
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n

ν

SH wavesSH waves
Definition Definition 

These waves travel in a layer or 
possibly several contacting layers, and 
have the transverse horizontal 
polarization.     

/⊗ :

No 
image 

available
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Part IIIPart III
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Main definitionMain definition

Love wave is a surface wave 
having horizontal transverse polarization
and propagating in a medium composed
of an elastic layer lying on a substrate.

MORE INFO...

It is assumed that Love wave attenuates
with depth in a substrate.
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Love waves: polarizationLove waves: polarization

SUBSTRATE

LAYER
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Basic theoretical worksBasic theoretical works
Love 1911    Representation for surface waves with SH-

polarization, propagating in a system 
composed of an isotropic layer lying on
isotropic substrate

Thomson     1950    The first analysis of waves in stratified media
Haskell         1953    Correction of the previous results,

introduction of the Transfer Matrix Method
Knopoff       1964 Introduction of the Global Matrix Method 
Dieulesaint 1980   Equations for speed and polarization of
et Royer Love waves in orthotropic media                            
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Multilayered structureMultilayered structure

Free surface

E
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The main problem of practical The main problem of practical 
importanceimportance

Determining geometrical and physical 
properties of the internal layer(s) by 
analyzing the dispersion relations of Love 
surface waves propagating in the multi 
layered  structure
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Analysis schemeAnalysis scheme

I. Single layer

i.  Obtaining Christoffel equation;

ii. Determining the Christoffel parameters

II. Multiple layers

i.  Formulating contact type boundary conditions

ii. Obtaining the Global (Transfer) Matrix

III. Numerical implementation
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Single layer analysis.Single layer analysis.
Equations of motionEquations of motion

( , ) div 0x t x x∂ ∂ ≡ ⋅ ⋅∇ −ρ =A u C u u��
WHERE

C Is the elasticity tensor, assumed to be 
positive definite and hyper elastic;

u Is the displacement field;

Is the material density;ρ
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Single layer analysis.Single layer analysis.
Monoclinic anisotropyMonoclinic anisotropy
Definition:

The material is called monoclinic (with 
respect to a direction      ) if its symmetry 
group is generated by 

m
π
mR

REMARKS

I. The definition is equivalent to vanishing all of the decomposable 
components of the tensor  C having the odd number of entries of 
vector m;

II. The assuming monoclinic symmetry provides a sufficient condition
for the surface tractions acting on  any plane (ν ·x=const) to be 
collinear with vector m;

III. The elasticity tensor for monoclinic medium has 13 independent 
elasticity constants
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Single layer analysis. Single layer analysis. 
Representation for displacements Representation for displacements 
for Love wavefor Love wave

WHERE

( )( , ) ( ) ir ctt f ir x e ⋅ −′≡ n xu x m

x′ = ⋅xν
f is the unknown scalar function;

= ×m nν is the amplitude vector ;
n is direction of propagation;
ν is the unit normal to the median plane;
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Single layer analysis. Single layer analysis. 
TheThe Christoffel equationChristoffel equation
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The corresponding characteristic equation is:

REMARK

Multiple roots arise when the dicriminant vanishes
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Single layer analysis. Single layer analysis. 
Representations for the solutionRepresentations for the solution

Aliquant roots

( ) ( )
1 2( , ) sinh( ) cosh( ) ir x ctt C ir x C ir x e ′β + ⋅ −′ ′= α + α n xu x m

WHERE

C1, C2 are arbitrary coefficients defined by boundary and 
interfacial conditions
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Boundary conditionsBoundary conditions
Single layer on a substrate Single layer on a substrate 

I. Traction-free boundary conditions at the upper boundary

( , ) 0
2layer
h t =t

II. Contact type boundary conditions at the interface 

( , ) (0, )
2

( , ) (0, )
2

layer substrate

layer substrate

h t t

h t t

− =

− =

u u

t t

III. Sommerield’s attenuation condition

'
lim ( ', ) 0substratex

x t
→−∞

=u



3/13/2009

Method of analysis for multipleMethod of analysis for multiple
layers on the substratelayers on the substrate
/Global Matrix Method//Global Matrix Method/

1
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Example: Four anisotropic layers lying on an
anisotropic substrate.

The dispersion equation:
MORE INFO...

det( ) 0M =
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Some analytical results for Love Some analytical results for Love 
waves waves (one (one orthotropic orthotropic layer on the layer on the 
orthotropicorthotropic substrate)substrate)

Proposition. a)  No Love wave can propagate in a system 
composed of a single orthotropic layer lying 
on an orthotropic substrate, when multiple roots
in the Christoffel equation for the layer  arise;

b) Love wave can propagate, if and only if the phase
speed belongs to the interval

c∈(clayer
bulk ; csubstr

bulk);

c) The dispersion relation admits the following 
representation:

( )
( )

2 2

1 1 1 1
arctan , 0,1,2,...;c i n n

h
⎛ ⎞⎛ ⎞γ ⊗ ⋅⋅ ⋅ ⋅ ⊗

ω = + π =⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟γ γ ⊗ ⋅⋅ ⋅ ⋅ ⊗⎝ ⎠⎝ ⎠

m C m
m C m

ν ν
ν ν
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Numerical Example

Love waves Love waves 
(one layer on a substrate)(one layer on a substrate)

Remark

A layer should be less rigid, than a substrate. 
Otherwise, Love waves do not exist.

n
ν
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Numerical Example

SH waves SH waves 
(two layered plate)(two layered plate)

n

ν

Remark

A lower mode wave near 
vanishing frequency is a 
soliton-like wave
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Numerical Example

Love and SH waves Love and SH waves 
(comparison)(comparison)
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Numerical Example

Love and SH waves Love and SH waves 
(comparison)(comparison)

nν

nν
Love

SH
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Numerical Example

Love waves in multilayered medium Love waves in multilayered medium 
SiC

Si3N4

Silicon
Monocrystal

[001]

10 layers,
each layer 10 
nanometers
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Love waves in multilayered medium. Love waves in multilayered medium. 
Dispersion curves (10Dispersion curves (10--layered plate)layered plate)

Numerical Example

Dispersion curves 
Love waves in a 10-layered system 

(multiprecision computations)
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Dispersion curves 
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Love waves in multilayered medium. Love waves in multilayered medium. 
Dispersion curves (10Dispersion curves (10--layered plate)layered plate)

Dispersion curves
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Numerical Example
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Love waves in multilayered medium.Love waves in multilayered medium.
Layer thickness variationLayer thickness variation

Variation of lower branch of the dispersion curve due 
to 10% depth increase of the corresponding layer
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Numerical Example
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Love waves in multilayered medium.Love waves in multilayered medium.
Simultaneous variation of density and shear Simultaneous variation of density and shear 
modulus of the corresponding layer/substratemodulus of the corresponding layer/substrate

Variation of lower branch of the dispersion curve due to 10% 
simultaneous increase of density and shear modulus of the 

corresponding layer/substrate
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Love waves in multilayered medium.Love waves in multilayered medium.
DelaminationDelamination of the 10of the 10--layered plate from the layered plate from the 
substratesubstrate

Numerical Example

10-th layer with vanishing 
rigidity
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Love waves in multilayered medium.Love waves in multilayered medium.
Defoliation of the 10Defoliation of the 10--layered plate from the layered plate from the 
substratesubstrate

Numerical Example

Varying rigidity of the 10th layer
(Lower branches of the dispersion curves)
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Numerical analysis:Numerical analysis:
SH waves in stratified platesSH waves in stratified plates
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SH waves in multilayered platesSH waves in multilayered plates
Lower mode dispersion curves for tractionLower mode dispersion curves for traction--
free plates with different number of layersfree plates with different number of layers

Numerical Example

Plates with alternating 
isotropic layers: 

1

1

1 2

3

... 1
... 1
1; 4;
1; ...

n

n

h h= = =

ρ = = ρ =
µ = µ =
µ =
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SH waves in multilayered plates SH waves in multilayered plates 

Numerical Example

A 31-layered plate
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SH waves in multilayered plates SH waves in multilayered plates 

Numerical Example
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SH waves in multilayered plates SH waves in multilayered plates 

Numerical Example
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Possible applications of Possible applications of 
analyses fanalyses for Love and SH or Love and SH 
waves propagating in stratified waves propagating in stratified 
mediamedia



3/13/2009

Possible applicationsPossible applications
Determination of physical properties of the internal 
layer(s) with questionable properties by analyzing 
the dispersion relations for Love/SH waves

Free surface A layer with 
questionable  properties

Substrate
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Possible applicationsPossible applications
Application to geomechanics

Principle possibility to 
analyze depth, geometrical 
and physical properties of 
the questionable layers 
(water or oil saturated) by 
the dispersion curve 
analysis 
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Possible applicationsPossible applications
Application to glue laminated timber structure 
analysis

Principle ability to analyze 
physical properties, presence 
of cracks, flaws, and 
delaminations by the 
dispersion curve analysis 


