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Some recent results in SH- and Love wave analyses
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History of the IPM

The first director of the former Institute of Mechanics
Professor B.G. Galerkin ~1938

The first director of the Institute for Problems in
Mechanics of Russian Academy of Sciences

}' I: A.Y. Ishlinskiy 1965-1990
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History of the IPM

The following persons worked in IPM in different years

Professor L.A. Goldenveizer (theory of shells, asymptotic methods)

Professor N.V. Zvolinskij (theory of surface waves, analysis of tsunami)

Professor G.I. Barenblatt  (fracture mechanics, hydrodynamics)

Professor O.A. Olejnik (differential equations, homogenization)
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IPM
Laboratory of Wave Dynamics

The head of Laboratory Professor 1.V. Simonov

Fracture mechanics and Astromechanics
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IPM

Laboratory of Wave Dynamics

The main directions:

Analyses of bodies collisions and aftereffects:
Fragmentation, Cavern-and-crack formation, Penetration
= ”l - T ' /
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IPM
Laboratory of Wave Dynamics

Experimental study:

Penetrating ability of different arrow-heads

>

AX + 00

The winner with respect to the penetrating ability

A

3/13/2009




Part |1

Intreduction terthe Suiface
Acoustic VWave analyses
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e malnityees o
Surface Acoustic WWaves
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RayIEIGINVAVES

Basic definitions

Pioneering Rayleigh’s work (1885) where these
waves were described.

Rayleigh surface wave means attenuating with depth
elastic wave with a plane wave front propagating on
a traction-free boundary of a half-space.
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Ray EIgaYEVES;
their role In seismic activity

These waves play a very important role in
transmitting the seismic energy and causing the
catastrophic destructions due to the seismic activity.

3/13/2009




RayIEIgRNYEVES;
|danger for structures
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RayIEIGNYAVES]

Comparing different seismic waves

1. Speed of propagation (phase speed)

Transverse Longitudinal
CLove < CRrayleigh < Chulk < Chulk

2.  Transmitted elastic energy

Transverse Longitudinal
Eove ~ ERayleigh >> Enulk ~ EpLik
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Raylelgh WENES
Problem of finding the
SECUIar*eqUEhiohn

For an isotropic medium the secular equation
(Rayleigh equation) is:

(A+20)(A+p)  —8u(A+2u)(A+p) +
+8u2 (A + (3L +4u) —16u3(h+u)? =0

where

What is the secular equation for an anisotropic medium?
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Raylelgh WENES
Problem of finding the
SECUIareqUEhiohn

For an arbitrary anisotropic medium the secular
equation has not been found yet (2006)

Currie, 1979
Taziev, 1989
Destrade, 2001
Ting, 2002, 2003

Related problem
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Trie ralaiac graglerm
How many independent
Gonstantssav eI,
ANISeERIC ElaSHICILY tensor7

/dz

t
C6><6 = Q 6x6

The new problem:
How many independent constants has a rotation in R%?
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RayIEIGINYEVES
The main practical problem

For a long time the main problem related
to Rayleigh wave propagating on an
half-space was finding conditions
at which such a wave cannot propagate
(Problem of “forbidden” directions).

Do “forbidden directions” exist?
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Rayelelgh WEWES
The main practical problem

Theorem of existence for Rayleigh waves:

Barnett and Lothe, 1973-76

Chadwick, 1975-85
Ting, 1983-96

In 1998-2002 a type of Non-Rayleigh waves was
observed and constructed explicitly.

Such a wave corresponds to appearing the
In a six-dimensional matrix associated with

the Christoffel equation.
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A refficikeeReIE NI BERS
appearing In the matrix analysis

Marie Ennemond Camille
Jordan
1838 - 1922
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L amBRVEVES
Basic definitions

These waves, discovered by Horace Lamb
(1917) can propagate in a layer with either traction-
free, clamped or mixed boundary conditions,
Imposed on the outer surfaces of a layer.

-
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L amBRVEVES
I ; Basic properties

~aa In contrast to Rayleigh waves, Lamb waves are
« = highly dispersive, that means the the phase speed
_HC\\ depends upon frequency or wavelength.
There can be an infinite number of Lamb waves
propagating with the same phase speed and differing
by the frequency.

Lamb waves can travel with both sub, Intermediate,
and supersonic speed.

An interesting physical observation:

After excitation, the most energy is transferred by the two lowest

modes (symmetric and flexural).
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LamIsREVES
The main problems

Presumably, the main problem related to the

' genuine Lamb wave propagation lies in constructing

~ solutions for an anisotropic layer having arbitrary
elastic anisotropy:

Deriving explicit secular equation(s) for the phase
speed and frequency (for different speed intervals
there may be needed different equations)

Obtaining and analyzing solutions for waves
related to appearing the Jordan blocks In a six-

dimensional matrix formalism.
3/13/2009




StoneleyAVaVves
Definition

These waves were
described by Robert
Stoneley (1924), and they
are waves traveling on an
Interface  between two
contacting half-spaces.
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StoneleyAVaVves
Basic properties

Stoneley waves exponentially attenuate
with depth in both half-spaces, and in this
respect resemble Rayleigh waves.

Both Rayleigh and Stoneley waves are not
dispersive.

Remark

For contacting isotropic half-spaces conditions of existence
were found by Stoneley.

Conditions for existence of Stoneley waves propagating in

anisotropic half-spaces are not established (2006).
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RobeifSieREIEY
A fact from biography

Stoneley; Robert (1894 - 1976) Elected 1935
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| oveRWaves

Definition
. 4 These waves originate to Augustus Love

(1911), who for the first time obtained a
solution for a wave traveling In a system
consisted of a layer and a contacting half-

‘_( space.

BN N .
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SH WeaWes
o Definition

Image
available

These waves travel in a layer or

nossibly several contacting layers, and
nave  the  transverse  horizontal

nolarization.
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Main definition

Love wave is a surface wave
having horizontal transverse polarization
and propagating in a medium composed
of an elastic layer lying on a substrate.

MORE INFO...

It IS assumed that Love wave attenuates
with depth in a substrate.
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_ove waves: polarization
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Basic theoretical works

Love 1911 Representation for surface waves with SH-
polarization, propagating in a system
composed of an layer lying on

substrate

Thomson 1950 The first analysis of waves in stratified media

Haskell 1953 Correction of the previous results,
introduction of the Transfer Matrix Method

Knopoft 1964 Introduction of the Global Matrix Method

Dieulesaint 1980 Equations for speed and polarization of

et Royer Love waves in media
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Multilayered structure

Free surface
~ Upper layer

~ Intermediate
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The marn problem ot practical
IMPOoJitanee
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Determining geometrical and physical
properties of the internal layer(s) by
analyzing the dispersion relations of Love
surface waves propagating In the multi
layered structure




Analysis scheme

Single layer
I. Obtaining Christoffel equation;

Il. Determining the Christoffel parameters
Multiple layers

I. Formulating contact type boundary conditions
i1. Obtaining the Global (Transfer) Matrix

III. Numerical implementation
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Singlé layer analysIs.
Eeuaiinnswoignoiion

A(0y,0¢)u=div, C--Viu—pu=0

WHERE

(C s the elasticity tensor, assumed to be
positive definite and hyper elastic;

U s the displacement field;

P Is the material density;

3/13/2009




SingieNayersarailysis:
Monoclinic anisotropy

Definition:

The material is called monoclinic (with
respect to a direction ) If its symmetry
group Is generated by

REMARKS

The definition is equivalent to vanishing all of the decomposable
components of the tensor having the odd number of entries of
vector ;

. The assuming monoclinic symmetry provides a sufficient condition
for the surface tractions acting on any plane ( ) to be
collinear with vector

. The elasticity tensor for monoclinic medium has Independent
elasticity constants
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Silric)le favar anelvsls

Representation for displacements
TOICIZOVEWAVE

Ir (n-x—Ct)

u(x,t)=mf(irx’e

WHERE

m =V XN isthe amplitude vector ;
N is direction of propagation;

V Is the unit normal to the median plane;
X'=v-X
f  is the unknown scalar function;
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SingleTayer-analysis.
IhesGhnisiohieleauation

(m®v~C--v®m)8)2(r +(m®v--C-n®m+m&n--C--vOm)Jd, +
(m®n--C--n®m—pCz)

Jf(x'):o

The corresponding characteristic equation Is:

(m®v--C--v®m)y2+(m®v--C--n®m+m®n--C--v®m)y+ 0
(m®n--C--n®m—pC2)

REMARK

Multiple roots arise when the dicriminant vanishes
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Single layer analysis.
Represeiniationssiepineseluiion

Aliguant roots

u(x,t) = m(C; sinh(irax’) + C, cosh(irocx’))e"(BX'”'X‘Ct)

WHERE

C,, C, are arbitrary coefficients defined by boundary and
interfacial conditions
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B oUNGER/ACENEIIGNRS
Single layer on a substrate

|. Traction-free boundary conditions at the upper boundary

h
t —,1)=0
Iayer(2 )

[1. Contact type boundary conditions at the interface

h
Ujayer (_E , t) = Ugybstrate (O, t)

h
tIayer (_E 1) = tsubstrate (0,1)

[11. Sommerield’s attenuation condition

lim u X' 1) =0
3/13/2009 o Substrate( )




MetheuleiRazlSISHeIAUIHPIE
layers on the substrate
[GloBalSVIat VI ETHEE/

Example: Four anisotropic layers lying on an
anisotropic substrate.

det(M ) =0

The dispersion equation:

MORE INFO...

3/13/2009




3/13/2009

SomEEREINCINESTISHeINEEVE

WaVves (one orthotropic layer on the
orthetiepIcsustEIE)

Proposition. a) No Love wave can propagate in a system

composed of a single orthotropic layer lying
on an orthotropic substrate, when multiple roots
in the Christoffel equation for the layer arise;

b) Love wave can propagate, if and only if the phase
speed belongs to the interval
Ce (C:IayerIOUIk ; CsubstrbUIk);

c) The dispersion relation admits the following
representation:

®=—>| arctan iYZ(m®V”C2”V®m) +nt|. n=012..




Numerical Example

L_ove Waves
(G1esl ) elubisdsStipstiale)

Dispersion curves
Love waves: one layer on a substrate
(isotropic components, h;=1; p;=p,=1, wy=1; Hy,=4)

2.0
Phase speed

Remark

A layer should be less rigid, than a substrate.
3/13/2009 Otherwise, Love waves do not exist.




Numerical Example

SH waves

{Weslayencdshplate)

SH waves: Two layered traction-free plate

(isotropic layeres with hy;=h,=1; p;=p,=1, 11,=1; L,=4)

Frequency
—_ — (%]
[\%] ()] o

w

i-Y

Remark

o

A Iower mOde wave near 0.0 0.5 1.0 15 Phasz.zpeed 25 3.0 35
vanishing frequency Is a
soliton-like wave
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Numerical Example

Love and SH waves
(COMPAISON)

Dispersion curves Dispersion curves
Love waves: one layer on a substrate SH waves: Two layered traction-free plate
(isotropic layeres with hy=h,=1; p;=p,=1, 14=1; 1,=4)

N ONT—/——

(isotropic components, h,=1; p;=p=1, W;=1; 1=4)

)
Frequency

Fregquency
(4]

iy

[=]

2.0 . \ X , . 1.5 2.0 25

Phase speed Phase speed
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Numerical Example

L overanarSHE R WaVES
(comparison)

Dispersion curves
Love waves: one Iayer on a substrate
(isotropic components, hy=1; py=p=1, 1y=1; 1=4)

Dispersion curves

SH waves: Two-layered traction-free plate
variation of the lower branch at the depth inrease of the bottom layer

hi=1; pi=p,=1; W=1; =4

~

\

Dy

1.2 . . 1.8

Phase speed
A: h,=1; B: h,=5; C:hy=10; D:hy=15; E: hy,=20; F:h,=25;

Frequency
o - w IN

-
o
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Numerical Example

_ove waves in multilayered medium

@

10 layers,
each layer 10
nanometers

Silicon
Monocrystal
[001]
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Numerical Example

|_ove WavesHiasmtliayeredsmed it
Dispersion curves (10-layered plate)

Dispersion curves
Love waves in a 10-layerd system
(double precision computations)

Dispersion curves ;‘:éi‘
Love waves in a 10-layered system - 3 e
(multiprecision computations)

2.0E+13

1.5E+13 o 5000 5500

Phase speed (m/sec)

1.0E+13

Frequency, Hz

5.0E+12

0.0E+00 ‘
4000 5000

Phase speed (m/sec)
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Numerical Example

|_ove waves in multilayered medium.
Dispersiensculiesy:0:layeredplaie)
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Numerical Example

Love waves in multilayered medium.
L ayenificknessivanaiien

Variation of lower branch of the dispersion curve due
to 10% depth increase of the corresponding layer

m 1stlayer variation

= 2d layer variation

m 3d layer variation

m 4th layer variation

5th layer variation

© 6th layer variation

m 7th layer variation

m 8th layer variation

4.8 5.0 5.2 54 5.6 5.8 6.0 'm oth layer variation

Phase speed, km/sec 10th layer variation

GHz

>
(&S]
c
)
=]
oy
()
—_
Y—
QO
%2}
@®©
<
o

difference,
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Numerical Example

|_ove WaVessimmmilmizyereniesibimms

Simultaneous variation of density and shear
modul usielEtiieIcerREspeREIENayERSulsiEe

Variation of lower branch of the dispersion curve due to 10%
simultaneous increase of density and shear modulus of the
corresponding layer/substrate

= 1st layer

30
2d layer
3d layer
= 4th layer
- — « 5th layer

0 R

104 0 5l2 54 5
= 7th layer

-20 8th layer

= 6th layer

Phase frequency
difference, GHz

oth layer
= 10th layer
substrate

-30

Phase speed, km/sec
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Numerical Example

_ove wWaVessiimmilmizyereniesibimms

Delamination of the 10-layered plate from the
substrate

10-th layer with vanishing
rigidity
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Numerical Example

_ove wWaVessiimmilmizyereniesibimms

Defoliation of the 10-layered plate from the
substrate

Varying rigidity of the 10th layer
(Lower branches of the dispersion curves)

[ Original material
10 times less rigid
100 times less rigid
m 1,000 times less rigid
W 10,000 times less rigid

N
I
>
O
c
()
)
o
()
S
y—
&
@®
<
(o

1.E+09
54 55 5.6 5.7 5.8 59

Phase speed, km/sec
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NulmiecaIRaReINEIS:
SH MWeVESHsH@liieaNeiaies
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Numerical Example

SH Waves 1n multiiayered plates

|_owermode.dispersion.cun/es for traction-
free platespwithdififere ANIUmBERGIN ENENS

Lower branches of dispersion curves
for SH-waves in n-layered traction-free plates

Plates with alternating
Isotropic layers:

h=..=h,=
pr=-.=pp =1
W =1 pp =4
na =1 ...

Frequency
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Numerical Example

SH waves in multilayered plates

A 31-layered plate
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Numerical Example

SH waves in multilayered plates

Dispersion curves for SH-waves in a 31-layered traction-free plate

Frequency, Hz

N\

Lower branch

1.0 . . 25
Phase speed
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Numerical Example

SH waves in multilayered plates

Variation of the lower branch in a 31-layered plate
due to thickness variation of the middle layer

undisturbed plate

Frequency

1.560

Phase speed
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PossiglereppliCEGRS

Determination of physical properties of the internal
layer(s) with gquestionable properties by analyzing
the dispersion relations for Love/SH waves

Free surface .A layer with :
questionable properties
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PossiglereppliCEGRS

Application to geomechanics

3/13/2009

Principle possibility to
analyze depth, geometrical
and physical properties of
the questionable layers
(water or oil saturated) by

the  dispersion  curve
analysis




PossiglereppliCEGRS

Application to glue laminated timber structure
analysis

Principle ability to analyze
physical properties, presence
of  cracks, flaws, and
delaminations by the

dispersion curve analysis

3/13/2009




