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Preface

On the basis of an asymptotic method of averagmgnew equations of continuum
theory of layered media with interlayer slipping@ @btained taking in to account the terms of
the second order in the small layer thickness param The linear condition of slipping,
which connects jumps of tangent shifts on contactérs and tangent tension, is used. The
equations received in this study also are asyngatibyifull generalization of some models of
the layered continuum media based on engineeripgoaphes or approximate hypotheses
about nature of deformation of layers. Such modebs necessary when studying static
deformation of a massif and at the solution of dyitaproblems of geophysics. Wave
properties of the received system of equations iawestigated, dispersive ratios for
harmonious waves are derived. The propagationsoiparficial Rayleigh waves on border of

an elastic layered half-space is considered.
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Introduction

Interest in a problem of propagation and transfaionaof waves in layered continuum
media is conjugated with problems of seismology andineering geophysics. As a rule,
seismicity is connected with mountainous areas hclvrocky breeds come to a terrestrial
surface. Often these breeds contain the regulds @i cracks allowing to consider them as
layered structures. Classical researches of walsfin such environments usually proceed
from a continuity of a displacement field. HoweWer enough strong seismic actions it is
necessary to consider possibility of slipping aadgent motions on borders of layers. For
such extended influences it is necessary to userdge", continual models of continuous
media with structure as it is impossible to tak® iaccount the deformation of each element
of structure.

In our work on the basis of an asymptotic metho@][the average equations of the
layered continuous media with slipping are deritaking into account members of the
second order in the small parameter of thickness lafyer. The linear condition of slipping
connecting jumps of tangent shifts on contact berdend tangent tension is used. The
equations of zero approach were derived earli3,4]. The new equations received here also
can be considered as asymptotically full generatimaof models [5-6] of layered media
based on engineering approaches or on approximgtethieses of deformation nature of
layers. Such models are necessary when studyitig geeformation of a massif and at the
solution of dynamic (wave) problems of geophysics.

It is also possible to note that the theory of tageenvironments with slipping on contact
borders can be useful at the description of con@asaterials with additional soft layers (for
instance, rubber) between layers from the maihgraigid elastic material (metal).

Wave properties of the derived system of the equoatiare investigated, dispersive
ratios are received. The solution of a task on @edicial Rayleigh wave on border of an
elastic layered half-space is constructed.



1. Derivation of refined theory

In the Cartesian rectangular system of coordinatesx,, x, consider the boundless
layered medium. Let axig, is perpendicular to plane-parallel interlayer baanes.
The interlayer boundaries have coordinates x® =s¢,  s=0, +1,+2..., where

constant layer thickness<<1 is a small parameter. More exactly, the ratib<<1 should be
small, wherel is a characteristic size of distributed loads, ifmtance, characteristic wave
length in dynamic process under consideration. Takrspace values have to be made
dimensionless using this scdle

At interlayer boundaries the following slipping ebitions should take place according
to supposition that interlayer boundary is alwagspressed:

053<0 [u]=[0,]=[0]=0
[0,] =k[u] - linear slipping of Winkler type,
k.e=k=0(1)

Square brackefsf] = f f

denote the jump of valué at interlayer boundary.

X9 +0 X9 -0

According to Introduction, such conditions are apgmately fulfilled, if between
layers there present the soft sublayers of thickdiesd/ e <<1, with small shear modulus

M5 . Obviously in this case:

(0,0 = KUl £="220 = 1

where[u ]/ J is shear deformation of soft sublayer. In thisecag =kd/ &, or, vise versa,

k=u;el0. It is possible to say, thdt is a coefficient of shear interlayer connectioheT

layers themselves are isotropic elastic and argsida to Hooke’s law:

X, # X
Oiji — Py =0
O = Cijkluk,l

Expression for a tensor of modules of elasticity is
Ci :Adljdkl +:u(5ik5jl +5iI5jk)



Enter [1] "fast" variable according to method ofyraptotic averagingé =x,/¢.
Following [1], consider that, =u,(X,¢&,t) is a smooth function regarding «slow» variables

x and «fast» variablg, excluding point§® = x® / £, where it may have jumps of first kind.

Besides, regarding¢ it is 1-periodicf[u]] =u, u =0 . Taking into account such

£941/2 £®-1/2

choice of arguments and the chain differentiatioles, rewrite the system of equations on
frequency cell

x® -1/2<x,<x®+1/2, -1/2<é< 1/ 2:

Equations forx, # X', & #0:

£ Ciaealh T ‘g_l(Cijk M je TGl i) Gy —pU =0
Contact conditions fox, = x®, & =0:

£ Caadh £ T Cauly <0

[u]=0, [7Ciyall s +Ciglh,]1 =0

£7Caelhes +Cpaelhy =k[uy]

1-periodic conditions:

[[ull =y 0

E+1/2 U |5—1/2 =

Here and farther Greek indexeg,(/) take values 1 and 2, Latin indexes take values 3,

Present displacements of the medium in the forranohsymptotic row on degrees of small

parametes:
U =u@(x, &) +eu® (x D)+ eUP (% )+ UK E L

Introduce the operation of «averaging$) for function of «fast» variable, which

1/2
will be often used Iate|<f> = j fdé . Displacement approximations should satisfy addil
-1/2

condition (y”) =0 [1].
Substitute this representation in to system of ggus of the theory of elasticity.

Equating to zero the member at negative deg@eget, that zero approacf® does not



depend on «fast» variablg: u® =w (x,t). Equating to zero the member at negative degree
£ get, that first approach® satisfies to equatiorC,,, Ui’ =0. The system of differential
equations after that takes view:

Cljklwk,jl + Cijksuliljg + (C| X ulgll) + C| X §J|<(25)) £ +

+£|:Cijk| ul(<3,-)jl + (:ljk3uli,2j)5 + (Ci a<|uk(? + C| % 3uk(s;f)) 5] +

+&? I:Cijkl uli,zj)l + Cijkaulfc,?g + (Ci :skluk(?) + Ci 3<§Jk(?) g} T...= 0N it + ‘gpui(é)-i_ 3 Zpui 212)'*'

According to representation for displacements cme get the following representation for

stress tensor Components:
0 =00 +eo) +e7T7+ ..

(n) — (n) (n+1)
rac oy _Cijkluk,l +Cijk3uk,{ .

All stress presentations are 1-periodic functiohg oIn particular,oy = C 5u) +C, 5 0

and the following conditions take plage®’] =0, [[o']] =0 . Easy to see, thévi(g)g =0.
Leaving the system of equations for the membera oértain orders, applying the
averaging operatior( f yand thus getting rid of “fast" variable, we obtdlre averaged

effective model of the layered medium with slipv@inkler type.

Now derive a revised theory of second order. Fa ithh the system of equations we
keep terms of order’ . Applying the operation of averaging on the peigitg cell ( > to the
system of equations, get the following result:

CiuWe.j +C”.k3<u§1,}>’j +£C”.k3<ué2‘2>’j +£2ij3<uk(?>'j = PW

This is the desired averaged system of equations flayered medium with slippage, for
complete formulation it needs to find functioés&’]‘}>(n=1,2,3), which patrticipate in this
system.

Each of functionsu™(x,,&,t) (n=1,2,3), may be found from appropriate «task on the
periodicity cell» at-1/2<¢§<1/2 [1], which arised from equating to zero the terais

definite degree"™ in asymptotic system of equations. Additional dtinds for these

functions detecting are obtained by contact coowlitieformulation for each from these



functions on interlayer boundaries, 1-periodic ¢bads [[u™] =0 and conditions

<ui‘“)> =0.

Let’s formulate these three tasks on the edll 2< <1/ 2.
Taskonthecell 1

For |§|<1/2 have

Coacdthce =0
For ¢=0 have

[CacUir] =0, [uM] =0
K[Uy"] = Cyq Wy +C i’
Additional conditions:

[u®] =0, (u®)=0

Solution of task 1

a)i=y

C ok = O,
U =0 mpu |&]<1/2

For £=0

[US] =0, Ku®] = g(w,,+w,,) +uf), [[u]] =0, (u)=0

Function u§1)=¢y£+cyi is the solution of differential equation. Thenorfr condition

[[u®]] =0 follows @,/2+c," =-@,/2+c, . From this follows, thafu’] =c," ~c, = -¢,.

From condition<u‘y1)> =0 follows ¢," +¢,” =0, or ¢, =F¢,/2, orul’ =¢ (§F1/2).

Condition for jump of shear displacements takes/tae:

k¢, = u(w, , +w, )+ ug,, from this follows, thay, = -7,/ (k+ ), 1, = p(w,;+w; ).

6)i=3



Ciaz = (A +2u)0,
u$ =0 for |&]<1/2
For =0
(U] =0, [uP] =0, [[u]] =0, (uP)=0
Solution of this task is trivialu$” =0.
So, the solution of task 1 on periodicity cellepresented by functions:
ut’ =g, (§F1/2)
u’ =0
Here and farther in formulas the upper sign in syihib relates to valued<é<1/2, and
lower sign relates to valued/2<¢<0. Alsog, =-1,/(k+u), 1,=uW,+WwW,).

Accordingly, the derivatives of the averaged outpequired for the system have the

expressions

u =0, u=¢,, (u})=0, (u2)=9,
Taskoncel 2

For || <1/2:

CiaWi i + Cialic e + (CaaU) + C o D) ¢ = oW,

Applying to this differential equation the averag;inperation( > and taking into account,
that <(Ci3k,u,£fﬂ +Ci3k3u,§2‘3){> =0, and other members of this equation do not depend, get
its more simple consequence:

(2) —_ (1)
Ci akalk g = G aUy A

For £=0:
[C|3k3u|£2,<3] =q4Cy ulill ' [Uéz)] =0
k[u}(/z)] = Cy3k| UISI) + Cy3k 3uk(2;f)

Additional conditions:



[u®] =0, (y®)=0

Solution of task 2

a)i=y

U =-y,, @,=¢,, upu |§<1/2
For =0

U =4ud =, KU1 = MuB+u?) = -y, 12+8), [[u?] =0, (u?)=0
Solution of the differential equation is a functiaff’ = -, é?/2+b;é +¢*
From condition[[u”]] =0 follows -, /8+b) /2+c," =, /8-b, [ 2+¢,
From this follows, that [ul”] =¢,"—¢,” =«(b) +b))/ 2.
From condition[u?] = {u’] =¢, follows b, -b, =y, .
Then,-k(b; +b,)/2=u(-y,/2+b}), and, as consequence

(20} ~gp,) /2= ,u(—t//y [2+1)),

by =+y,/2, [u?]=0, =c, =c,.

New representation of the solution takes viesq(f.) = —<//y(£2 Fé+c)/2.
. . 1/2 0 1/2
Condltlon<u(y2)> =0 glves:q‘3/3(_1/2+fz/4_1/2—4’2 /40 +c, ¢ 1/2 =0 orc, =1/6.

Finally ul® = -y (§*F&+1/6)/ 2.

6) =3

Uy = =AUS, [ (A +20) =y, 1, =AB, ;1 (A+24) 1pu é|<1/2

For £=0

(U] =AUl (A+2 0] =405, (U] =0, [[U”]) =0, () =0

The solution of this task is analogical to consédieabove and has the view:
U = - (E°FE+1/6)/2

So, final solution of this task on periodicity cellrepresented by following functions:

10



U =~ (E2FE+116)12

u? = (E°FE+1/6)/2

where ¢, =¢,,, Y;=A, ;1 (A+2p)

Derivatives, required for averaged system of eguadierivation, are
u?) =, (E¥1/2), u) =, (E¥1/2), (U)=0, (uF})=0

From this follows, that terms of second approachlisplacements does not participate in

averaged system of equations..

Takoncell 3

For || <1/2
Q3k3u|£?§ = _Cijklulgl,?l -G f:kluk(zf)l _Cijk *yk(?j +,0Ui(t1t)
For =0
[Q3k3u|£il] =qCiy ulizl , [Ués)] =0
k[ul(/s)] = Cy3k| Ug) + CySk 3uk(:?
Additional conditions:
[u] =0, (u®)=0
Solution of task 3

a)i=y

Expand the expression for the tensor of elasticutiod

Gty = CpiaUsh = (A0,,05 + 10,50, + 10, 55)Ug)y = (A + L))y, + U
(Cyan +Coua)uh = ((A+ 108,05 + 2118, ) Uy = (A + iU, + 207
Equation for task on cell:

U =ul —(A+uly [ u-202, - A+l u+puQ p npu |€]<1/2
For =0

U] = {uZ +uf) =0, KuP] = wu +u+u) , [ =0, (u?)=0

11



Equation takes view:

Uz = X, (£71/2)

where x, = =@, —(A+ )@ 5, [ u+2Y, s+ A+ W5, [+ PP, | 1
Integrating and taking in to account conditiary)] =0, get
u® = x, (621652 14+bE +c;)

From this follows:

[u®] :)(V(c; —c;) =X, (1/12—by).

Then:

KUl =ky, (1/12-b,) = u(x,b, -9, , 112-1p,, 112)

X0, =(Kx, + i, o+ i, )| (k+ 1) 112

Desired equation takes form:

U = x, (E2F &) 12+ (kx, + o+ s, ) | (K + 1) 112
For averaged derivative get:

<u£3}> = ,u(z//m +,, —)(y) [ (k+p)/12

Finally, after obvious transformations have:

(Ui2) = 1( @y 5+ @A+ 208, 1 A+ 26)= B, 12) |+ 1) 112

0)i=3

Expand the expression for the tensor of elasticutiod

Cojatn = Caialpy = (40505 + 0450) + 030, )U’y = (A+ p)upy .

(Coa +CaxdUih =((A+3u)0505 + (A + )3, Jul) = 204 + 2u P + A+ u
Equation on cell:

UL = ~(A+ p)ulys /(A +2u) = 208 ,— A+, 1A+ 2u) npn €] <1/2
Mpu é=0

[ =u] ~Aufd/ (A+2 9 =0, [u] =0, [[uP]] =0, (uf?)=0

Equation may be rewritten as:

12



Usze = X5(£F1/2)

where Y, =(A+ )5 [ (A+2U)+ 23—~ A+ )P 53l A+ 20)
Using [u$”] =0 u [u{}] =0 get:

U = x,(£°/6F &%/ 4+b g +c,)

From condition[[u{”]] =0 follows:

~1/48+1/16-b, /2-c,= 1/48 1/16b, /2c, wm b,=1/12
From this get:

U = x,(£212% £ 12+1/12)

Easy to see, that

<u§f‘§>=)(3(£3/6$£2/4+E/12)‘1_/12/2=)(3 (1/24 1/12 1/16 1/16)

So, the desired solution on periodicity cell isregented by following functions (let's write
only required derivatives by “fast” variable):

U = X, (E°F &) 12+ (U, o+ up,, +Kx,) | (K+ 1) 112

U = x,(E2FE+1/6) /2,

where

X, =2, s+ A+ pWs, [ =@, ~ A+ )s 5, L+ PP, | 1L
Xo=(A+10)Ws 51 (A+20)+ 2P o= A+ 1) 55 (A + 21)

Expressions for averaged derivatives have the view:

() =Ty g W), () =0

Final expressior{uf}> may be written as:

g\_ 1 WU 3N+ 2u P
() _Em(qjyﬁﬂ W PTALL ‘;%J

13



2. Variousvariantsof averaged system of equations

Using these results we formulate the desired systieeguations (Latin indexeg,k,|
=1,2,3, Greek indexeg, y=1,2):

1) 2 @)\ —
Cy i W +Cyik3<ukz>,,— te Cyjk3<ukz>,j = PW, y

@) 2 G =
CyjWi +Csjk3<uk‘(>’j +& C31.|(3<uk5>’j = PW 4

Taking into account the expression for the tenscelastic moduli, the terms of this system

may be written in the form:

CiaWe ;i =(A+ LW, + LW, Coj W ji = (A + LWy 5+ LW,

Cyjk3<ulil,2f>,j = Cyiﬂ3<“/(31if>,j = 1P, s Csjk3<ul(<12‘>,,- = Csjﬁ3<”/(311‘>,j =Hbps s

Cppa (UL) = (U2} = 178, aa+ BN+ 21000, 0] A+ 2)= P 1 11) O+ 1) 112
Copa(Uit) | =(USh) , = 1 (4 + 10y poe | A+ 201)= Py o 111) 1 K+ 1) 112

Finally refined system of equations looks like this

(A+ L)Wy, + LW, g+ 1B, 5+ E L2 (B, 55+ (BA+ 210)B 5 5,5 | A+ 21)= P, 51 11) | &+ 1) 112= pw,

(A + )W yig + (Wagg + LB 5 + 11 (4N + DB o | A+ 2U) = PP o 1 11) | K+ p2) 1125 pwvy,

Remind, thatg, =-u(w, ,+w,,)/ (k+4). In general system the expression g is not

substituted to avoid appearance of very complemias. It is clear, that finally we have the
system of 4 order for displacement field; along spacial coordinates, containing also mixed

derivatives in time.
The system of equations become much more simplecdése of ideal slipping

interlayer contack =0.
(A + L)W, + LW, o + U, 5+ fzﬂ(¢y,ﬁﬁ3+ GA+2UNps g, A+ 2U)= PP, /,U) 112= pw, ,
(A + LW+ Wy + i 5+ 1A+ DB g | A+ 20)= B o 1 1) 112= v,

¢y = _(Wy,S + WS,y)

14



Quasi-static case for general system is obtainedréayoval terms with time

derivatives:
(A+ KWy + LW, o+ [, o+ €25 (B, gt (BA+ 2U)P 0] A+ 20)) |+ 1) 1125 C
(A + LWy i+ Wy + i 5+ ELP A+ 1) g0 | (A +200) (K 11)13= 0
B, = ~H(w, ;W) ] (K+ )
Quasi-static case for system with ideal interlasfgping gives:
(A+ KWy + LW, o+ 1, o+ E2U(B, gt (BA+ 20 5,0 ] (A 200)) 1125 C
(A + LW, 3+ MWy + U 5+ E LA+ )5 oo | (A+201)13= 0
¢, =-(w, 5 +w,,)
Separately let’s formulate flat (2-dimentional) dymic system of equations:

ku ku e’ (A+p) ey’ _
(/] +2/1)W1,11+(/1 + k+,u]W3,13+ k+,uW1’33_ 3(k+,u)2 (/] + 2#)(V\€,1133+W3,3111) +pm( 138 TW 3.31) =PW oy

ku ku e’ (A+y) ey’ _
(A +2/1)W3,33+[/] +kTﬂjW113+ k+,uW311 3(k+,u)2 0 +2’u)( 11113+W3,1111) W( st W 3,111) =PW g,

Quasi-static 2D system of equations has the fohgwiiew:

k ky £* A+

k k £ A+
A+ 240 J{A +kTﬂuj M +ﬂ AT f Y ((/1 + 2)(“’1’1“3+ W) =0

And, finally, 1D dynamic and quasi-static equatiéor bending of layered massif
(casen, =0, w, =w;,(X,,t)) takes the following view:
2

e’ (A+u ke £y
sk+uy A+op) ke P ok py

2

W, +0W 4 =0 (dynamics)

ey’ A+ ky
3(k+/,1) (/1+2/J) 31111 k+/,1 W31

=0 (quasi-statics)

Formulas for stress tensor components look like thi

15



USO) = Cija W +Cijk3u|£1,g)" USO) =AW, + (W +W, ;) + L(P 05+ 9,3,5)
0'51) = CljkIuISI) +Cijk3uk(,2{)| 0'i§1) = (/]d|j¢k,k +:u(¢i,j +¢j.i)_Adijws_ﬂ(wi5j3+l/lj5i3))(<r$l/2)
where
$:=0, ¢, =-puW,;+W, )/ (K+1), ¢,=@,,, Ys=Ads,[(A+2p)
The boundary conditions for the loaded surface eawilitten as:
c”m =P oV, =0
] J [ ! ] J
The condition of the first order becomes an ideniity some problems with certain

orientations of the normal to the boundary.. Instltiase, the second-order condition:

o{? h, =0 should be used.

3. Wave properties of thelayered mediawith interlayer dipping.

3.1. Flat harmonic waves.

Define the properties of harmonic waves propagatngn arbitrary direction with respect to
the orientation of the layers with arbitrary couaglicoefficient layerk. 2D dynamic system

of equations for layered medium has the view:
ku ku e’ (A+p) i ey’
12+ u ¥

(\N.L,1133+ W3,3111) (W 18 TW 3,31) =PW oy

A+ 2/1)VV111+[/1 + K+ Wy 5+ K +,uW1,33_ 3k +,U)2 (A +2u)

2,2
3,1111) E—ﬂ

ku ku e’ (A+u)
A+2U)W, .+ A+—— |W. +
(A+2£)W, 5 [ kwj P oK+ i3

13T k+,uW3’11_ 3k+ 1) (A+2u) (W1,13+W 3,111) =PW g,

(W1,1113 W

These equations may be rewritten as following:

(A + 2400y + AWy o IW 5t W) B (Wi w o) +pe?B (w xw ), = pow,

(A + 20000 3y + AWy o+ AW W) B (W g w ) +pe™B (w gw ), = pw .

Introduce additional variables:

U= Vvl,3 + W3,1

16



V= - ppu,, + pei

Then the system of equation take the following form:
((/1 +20)W, ,owm) +AW, +V =0

AW+ ((A+20)Ws, 5= pw o, ) +V = 0

W, +w,,—U =0

-, (pu,, +pu,)-V =0

Here the new coefficients are introduced:

_ k
fi=u

A+ U — 2 _
e Bl BRI pp 2w Als

Let's seek the solution of the system as harmorices propagating along=(n,n,) with
frequencyw and wave number= kn = (k,,,), K, =Kn,, kK, =kn,, [k|=«, |n|=

| (K1Xq+K3Xz—at)

Wl — Aei(’(lxl*"(sxs‘ﬂ) W3 = Be

U C i (KyXq+K3X3—at) V D i (KyXq+KgXg—akt)

The wave number =27/1, where| - the length of harmonic wave. We also have
ek =2m(ell), ek* =4m* (e )2. The values /| <1 should be a small parameter.

In the result we get homogeneous algebraic systequations:

(A +2u)8 + 12 = pa’) A+ (A + 1, )k k B=0

(A + 1)Kk A+ ((A+ 20003 + 1,7 = pe’) B=0

where y, = i+ £°B, (11K - par’).
Condition for the solvability of this algebraic $g gives an equation for the propagation

velocities of harmonic waves in a layered mediurdeunrstudy:

ot =14 He 2y He LA+ (M- ”f)qnzo
(A+2u) A+2u)  A+2u) A+ 2u)

where {% = pc? [ (A+2u)=c’/c?, c=wlk is the phase velocity of wave propagation in

layered media,c, =\/(A+2u)/p u c,=.ulp are propagation velocities of elastic

17



longitudinal and transverse waves in a homogenetastic medium. Define the direction of
the wave by the angler, n =sina. For some values of biquadratic equation has exact

solutions.

Fora=0:

Quasi-longitudinal wavg, =1, quasi-transverse waye = \/ﬁ/\/(A +2U)(1+ %K% ,).

Fora=rml4:

Quasi-longitudinal wavé, = (A + u+ i+ £k Byp1. 12) [ (A + 2u)(1+ €63, ), quasi-

transverse wave, = \/Z / JA+2u) .

Fora =/ 2:

Quasi-longitudinal wavég, =1,

quasi-transverse wawg, = \/(/:1 + 52/(2,6’2/,1*)/\/(/1 +2u)1+ £k *B,) .
For anya solution of this equation will be sought in thgoegximation
{* =2+ {.%e+0(e?)

Zero by e approximation for,’ is obtained from equation:

ZO4_(1+LJZOZ+ [1 + (/1+/'1) (/’1_[1) SinZ 2r=0
(A+24) (A+2u) A+2u) A+ 2u)

Values?,?, which correspond to quasi-longitudinal and quemisverse waves in layered

medium are:

(=08 1~ iJ(A+m2+2u+m (U)o g4 = E)°
° G2 NO+2uf G aean ar )

Correction coefficientd.? is:

2 _ 207 2_ M Lo S 2 7
2 =Bk ({,?—cos 21{(/”2#) sirfa Zoj ( Z, ( 1*(/”2#))}

Taking into account the expression i get the desired values:

2_ 72, 2.2 2 anc2 2 M 2 (A +p)? A+ (u-h) (u-p)?
{“={,"*Kk€P,({,”—cos m{(o O +200) smaJ /\/(/l+2,u)2+ 20T 2y A ) cosa+—@+ 205
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- 2.2 2_ 2 M : 2| A+ ) SA+ ) (u-p) (u-f)?
ZJ{H”&(Z“ COSZZ’(Q (+22) S"f”] /Z°J<A+2u)2+ Ve o+ O ar uy

From these formulas easy to see that the propagatiocities of harmonic waves have small
dispertion {men ~ x°c*) and dependance on direction of wave propagation

Let's investigate the limiting cases of these folasus -~ 0 (u, —» f),case of
complete adhesion layers (homogeneous elastic meliu. o (7 — x) and case of an
ideal slip layersk - 0 (& - 0).

Quasi-longitudinal waves (sign + in formulas fo/, and ¢ ).

In this cased’ - ¢, for € - 0.

Fork - o ¢ -1 (c - ¢)— elastic longitudinal wave in an isotropic mediu
Fork - 0

For a =0,77/ 2 (waves along and cross the layers)

ZO—>1,C—>C]_

For a =/ 4(waves at an angle to the direction of layersnir@mum speed)

Ja LA+p) e /(/lﬂl)c1
(A+2p) (A+24)

quasi-transver se waves (sign — in formulas fo, and { ).

In this cased’ - ¢, for € - 0.
Fork - o ¢ - ¢,/c, (¢ - c,)— elastic shear wave in an isotropic medium.

Fork - O

Y 1_\/(/l+ﬂ)2 2O e
° (A+2u)  (A+2uy A+ 2uy

For a =0,77/ 2 (waves along and cross the layers)

ZO—>O,C—>O
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For a =7/ 4 (waves at an angle to the direction of layers ntlagimum speed)
{o - Cyle, ¢ -0,

Dependence of the velocities of quasi-longitudimales and quasi-transverse waves
from the coupling coefficients of layeks are shown in Fig. 1-5. The upper series of cumes i
these figures correspond to quasilongitudinal waarel the lower series correspond
guasitransverse waves for different valued =0.5, 0.3, 0.1. To the dimensionless elastic
moduli of the layers are given values/ (A +2u)=ul(A+2u)=1/3.

Above each curve is shown the angte=0, 30, 45, 6, 9¢° of wave propagation
direction. Fora =0, 45, 9@ the curves in Fig. 1, 3, 6 are described by ef@atulas, given

above. For other values of biquadratic equation f@r=c/c, does not have exact formula,

only graphic representation (Fig. 2, 4).

Z K o =0

] —
0.8

0.6}
I i e o e e e

r

vAb e

0.4F ¢

| &

e
0211
!

L‘].{J:I. e
0.0 05 1.0 1.5 20 25 3.0

cll=05 ----g/l=03 ... cii=01

Fig.1
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oK) a=1/6

(]I |
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0.6' e —————
,-*"'"

0.4}

0.2¢

0.0k . . . , . R
0.0 05 1.0 15 20 25 3.0
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Z(k) x=74
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00 05 10 15 20 25 30
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2 () a=m!3

1,0 i -.___.__-.-—-—-_-1—-
F-‘H-
0.8}
0.6 ———
B Lo
0.4
0.2
D.O 3 ) 4
00 05 1.0 186 20 25 30 L
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2K =72
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Fig. 5
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N3 stux rpaduKoB BHICH YpPOBEHb IHCIEPCHH IUIOCKHX BOJNH B cpeae (mpu
HEOONBIINX 3HAYCHUSX KOIQ(OUIMEHTAaX CBSA3M CIOEB) Ui pa3HbIX HalpaBICHUN
PacIpoCTpaHCHUA U €€ 3aBUCUMOCTE OT OTHOLICHUSA TOJIIIHUHBI CJI0A K JJIMHE BOJHBI

From these graphs it can be seen the dispersi@h ¢é\the plane waves (for small
values of the layer coupling coefficients) for drént directions of propagation and its
dependence on the ratio of layer thickness to taeelengtle /| . It is possible to conclude

that the dispersion is observed only for dimengssicoupling coefficientk / (A +24)<0.7.

It is mostly significant for directionsr =9 (along layers) for quasi-transverse waves), see.

Fig. 5, lower series of curves.
3.2. Superficial Rayleigh waves.

Consider the surface waves on the boundary of ardaly half-spacew~ < x, <0,
-0 <x, <oo (flat task). The system of equations for the dispiaents of the layered medium
with a slip at the interlayer boundaries derivediea
((/1 +20)W, ,owm) +AW, +V =0
AW, 5+ (()I +2U)W, 53— W o ) +V =0
W, +w,,—U =0
& B,(u,, + pu,) -V =0
Boundary conditions fox, =0:
Oy = (A+20)W, ;+ Aw, =0
O3 = U(W, ;+W,;) =0
Forx, - —o: w -0, w, -~ 0.
We represent the solution of the problem in thenfof a surface wavey>0:
W, = Agsglna)
w, = Besglla)

Substituting these expressions in to the systendifférential equations, we obtain a

homogeneous system of algebraic equations:
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(107 —320,) A+ (A + 11,)yikB =0

~KZ(A+ 1 )yA+((A+ 20y -k, )ik B=0

Here the following new combinations of coefficieate introduced:
He =R+ LKA, D= —pc, D =A+2p-pc’

D, =N, +E PN, N, =[-pc,

wherec = w/ «, is the phase velocity of the desired surface wave.

Condition for the solvability of this system givine biquadratic equation to determine

the indexy:
A+ 2ty =2y (D + A+ 2000, = A+ 1, P )+ KA, = O

From this equation, we find two positive solutigns>0:

K; {(ugAZS A+ 2u)D, - A+ 4, )) iJ(ugAz FA+20, - A+, F) - 40+ m)ugAlAZE}
200+ 20 ),

2

Vi =

Thus, taking into account this fact, the solutiortha$ problem takes view:
W1 — eylx3ei(/(lxl—wt) + Azeyzxsei(/(lxl—ax)
W, = Bleylxaei(/(lxl—(d) + Bze}’zxsei (Kxq=at)

. A+ )nLAL
YA+ 2up -, )

kB, ,=K

Substituting these solutions into the boundary @mrs at x, =0 and get the system of

equations:
ylA&-l-y2A2+iKlBl+iKﬁ2:o

_/]Klzpi_/‘Klez+(/] +2U)yik B+ (A+2u)yik B ,=0
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The amplitudesB, andB, can be eliminated, then we have two homogeneaysbedic
equations for amplitude#y and A,. For farther simplification instead gf, , >0 introduce

valuesn, , from relations, , = y, ,/ k. These values are defined by formulas:

2
LMD A+ 200D, = (A + 11, iJ(ugAzf A+ 2N, - A+, P ) —AQ+ A AN,
Tz 20+ 201,

Homogeneous system of equations for amplitudeand A, is:

A+ ) (1+1) _
”{“ (A +2u; —AE)JA””{“ (A +2um; —AZE)}AZ -0

(/1+2ﬂ)(/1+ﬂg)/712_/1 +(/]+2,U)(/1+ﬂg)’722_}| 0
[((/1+2y)/7f—A2€) JA [((/HZ#)OZZ-AZJ ]AZ

For solvability the determinant of this system nxaghould be equal to zero. This gives the

equation for phase velocity of surface wave w/ «;:
A+ i, =0, n ) A+ 2uy 2+ An ) -

_AZS {’71(0' +24)7,° +)I)+/72(1+/722)( N+ 2y)712+,1)} -0

HereAu, = u—-pu..
Again investigate limiting cases of these formutass - 0 (x4, - 7).

In such cases

AR, + (14 200, ~ (4 B £ (BD,+ (A+ 208, — A+ AF ) — 40+ 200D,
20+ 20\

2 _
’71,2 -

The equation for the velocity of surface wave wél b
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A+, =, n ) A+ 2u )2 +An ) -

_(kT,u/J){Ol((/] +2uy7,° +/])+’72(1+,722)( A+ 2#1)7124_/1)} =0

Case of complete adhesion layers (homogeneous elastic medium)k — o (7 - )
In this case:

n?=1-c*Ic?, n,=1-c*Ic;

A+, - @+ )+ 2un 2 +An )= 0

From this we come to classical Reyleigh wave:

41~ 2 12 \J1-¢? Ic2 - (2-¢? [c?)*= O

Caseof ideal dlip of layers k - 0 (& — 0)

In this case, supposing that is a small parameter, get:

g2~ HHA+ )~ (A 2u)pc?
: (A+2u),

2 _ (A+2u=-pc®)(u, - pc®)
LA+ )~ A+ 2u)pc’

BA+2uyn,’ - 20+ 2unn,®&n, »=An,&n, ¥-An,= C

The graphs of the dependence of dimensionless welocsurface wave:/c, on the
layer coupling coefficientk are shown in Fig. 6 for various values of rati6l =0.5, 0.3,
0.1. As in the previous case the wave number277/1, wherel is a length of harmonic
surface wave. Also hee, =27(e /1), £,>=4m*(¢/1)’. This solution becomes close to

classical Reyleigh root for the range of coupliogfticient valuesk /(A +2u) >1.5+ 2.
Behavior of these curves is very similar to theawdr of lower series of curves in
Fig. 5 Quasi-transverse waves) for waves propagating along layerg £9¢°) and in close

directions. For classical Reyleigh waves, as knowyv,c, =0.9, the same relation takes
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place and in case under consideration for ratisusface wave velocity to the velocity of

quasi-transverse waves.

- TSR

0.5 1.0 1.5 2.0 2.5 30
e/1=05 g/1=03 - e/1=0.1
Fig. 6

In conclusion note, that the limits of applicalyildf the obtained asymptotic theory are
not precisely defined. Rather arbitrary in the akltion was adopted the upper limit of the
small parameters/1 =0.5. Nonetheless, for the layer coupling coeffitse starting with

valuek/(A+2u)> 0.7, the calculations give close results for propammatvelocities of

quasi-longitudinal, quasi-transverse and surfaceewdor the whole range of wave length
e/1<0.5.

Suppose, that derived refined theory is possibleige for investigation of seismic
waves transformation during their exit to terredtrsurface of layered rock massifs,
accounting slip shifts on contact interlayer boureta Also this theory may be useful for
description of deformation in composite layered enats with intermediate soft sublayers
(rubber sublayers betweb metallic layers).

Authors are grateful to A.V. Ganshin for help alaulations.
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Conclusions

Ha ocHOBe acuMOTOTHYECKOTO MCTOAAa OCPCAHCHUA TIOJYUCHBI KOHTHHYAJIBHBIC
YpaBHCHHA CIIOUCTOU Cpeabl C MPOCKAJIb3bIBAHUECM C YYCTOM YJICHOB BTOPOIO MoOpsAAKa IO
MaJIOMy TlapaMeTpy TOJIIMHBI ciiosl. Vcrons30BaHO JIMHEHHOE YCJIOBUE MPOCKAIb3bIBAHUSA,
CBA3BIBAIOIIIEEC CKAYUKHN KacaTCJIbHBIX CMGH_ICHI/Iﬁ Ha KOHTAKTHBIX I'paHHllaX W KacaTCJIbHBIC
HamnpspkeHus.  MccienoBaHbl BOJIHOBBIE CBOMCTBA IIOJIYYEHHOM CHCTEMBI YpaBHEHUH,
MOJIYYCHBI JUCIICPCUOHHBIC COOTHOLICHUSA IJIA TAPMOHUYCCKHUX BOJIH. HOCTpOCHO PCIICHHUC
3aa4d O TIOBEPXHOCTHOM BOJIHE THUMNA Panes Ha TrpaHUIEe yOpPyroro CJIOUCTOrO
MOJIYIIPOCTPAHCTBA.

On the basis of the asymptotic method of averagbt@ined the system of refined
equations for layered continuum medium with intgelaslipping. The theory takes into
account terms of the second order regarding ther Ithickness as small parameter. Using
linear slip condition between the tangential jungpslisplacements at the contact interlayer
boundaries and shear stresses. The wave propeftige agesulting system of equations,
including dispersion relations for harmonic waves @vestigated. The solution of the
problem of Rayleigh surface waves on the boundaancelastic layered half-space is found.

The created refined theory of layered media may sefull in research of seismic
waves propagation in layered rock massifs and udystof deformation properties of
composite layered materials.
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