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 1. Elastic plastic flow theory
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is not applicable to softening because of violation Drucker material
stability condition and Hadamard correctness criterion
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Damage may be simulated by
degradation of elasticity

2. State of elastic body with "damaged" zone

         E          E1            E               x

Green zones – virgine material (E)
Red zone  -  damaged material (E1)
Elastic moduli: E1 << E

Deformation   Displacement



3. Damage theory (Kachanov, Rabotnov, 1958-59)
Damage and deformation are independent processes.

Damage criterion: ( , , ,..., ,...) 0Tθ θΦ ≥σ ε

Here Drucker material stability condition is violated

while Hadamard criterion is fulfilled, so the problem is correct

( )( : ) : 0ep x x∂ ∂ >E u u
Blue colour marks gradient theory regularization terms



4. Deformation diagrams in stress-strain-damage space
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On stress-strain planes the deformation diagrams have no softening.
The softening takes place due to growing damage and degradating
elasticity
The damage can grow due to non-thermomechanical actions.



6. NUMERICAL PROCEDURE

Implicit FE scheme (N.G.Bourago, V.N.Kukudzhanov, 1988)

Basic features:
• Dynamic variational Galerkin formulation
• Unstructured Lagrangian meshes
• Implicit quasi-second order approximation in time
• linear and belinear approximations in space
• All discrete unknowns are nodal
• Diagonal mass matrix
• Quasi-Newtonian iterations
• Preconditioned matrix free conjugate gradient method
• «minimal» nonlinear monotonization
• Accuracy restriction for time step
More info can be found in: www.ipmnet.ru/~burago/papers



7. Damage of plane strain specimen under extension

Element shapes:  ,  Spatial steps: 1/15, 1/30, 1/60.
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Fig. 2. Modes of damage for elastic material (a,d), elastic plastic material (b,e), elastic plastic material under heating
(c,f).



a)                           b)                                         c)

Fig. 3. Damaged state: typical graphs of horizontal displacement (a), mean stress (b) and maximal principal strain (c)
along horizontal line (0,0.6,3,0.6)

                  
a)                                              b)                                               c)

Fig. 4.  "Macrocrack" and contur lines of horizontal displacement illustrate the convergence of numerical solutions.
Graphs correspond to various meshes with spatial steps (1/15 (a), 1/30 (b), 1/60 (c)).



 Damage of specimen with macrodefects (pores) and microdefects
-  micropores (volumetric plasticity)
- dislocations (deviatoric plasticity),
- microcracks (damage parameter)

- 

- isotropic elasticity, associated flow rule and Garson's plasticity, damage criterion in
terms of maximal principal strain, constant damage growth rate, almost instant
degradation of elasticity..



Fig. 5. Damage of stretched plate with rigid curcular inclusion. Black
narrow zones are developed macrocracks. Colour zones indicate the value of

deformation x yε + ε . The graph on the right draws the dependence of the

stress  yσ  on the displacement yU  in the point ( 0x = , 6y = ).



Fig. 6. The damage in stretched plate with circular pore. Black narrow
zones indicate developing macrocracks. Colour zones indicate the value of
deformation x yε + ε . The graph on the right indicates the dependence of the
stress yσ  on the displacement yU  in the point ( 0x = , 6y = ).
In both cases of Fig. 1 and 2 the matrix material is elastic.



Explanation: The difference in the character of damage processes is
explained by the different character of strain concentration near the pore and
near the rigid inclusion. This may be seen in Fig. 7.

Fig. 7. The picture of strain concentration in vicinity of the pore (on the
left)  and near rigid inclusion (on the right). The dark violet color corresponds
to the maximal deformation.



Fig. 8. The damage in stretched plate with rigid elliptic inclusions, rotated through

the angle 
o30 . The damaged zones, the distribution of stresses yyσ ( on the left

picture) and calculated deformation diagram (on the right picture) are presented. The
mesh contained 2100 elements.



Fig. 9. The damage in stretched plate with rigid elliptic inclusions, rotated

through the angle o30 . The damaged zones, the distribution of stresses yyσ
(on the left picture) and calculated deformation diagram (on the right picture)
are presented. The mesh contained 8400 elements.

Deformation diagrams (integral characteristic of the process) are
practically coinsided, while the details of damage localization are different
(local pecularities of the damage process).



The damage in stochastically inhomogeneous rocks near the drillhole under
action of internal pressure

Maximal deflection of strain limit in damage criterion 5% (left) и 20% (right).



The development of macrocracks in rocks near drillhole



7. CONCLUSION AND PERSPECTIVES
The following theoretical model features are most important:

• Damage criterion should be formulated in terms of strain concentration
coeffitients (because deformations are not corrected in most of theories in contrast to
stresses and materal parameters).

• Almost instant degradation of elasticity with damage growth is required for
localization of damage as contact discontinuities or macrocracks.

• Minimal nonlinear monotonization near macrocracks is required in order to
prevent spurious short wave oscillations of numerical solutions.

• Resistance of damaged material in respect to compression is necessary in order
to  provide the positiveness of elementary volumes.

• Taking into account the inertia forces is required to support the correctness of
boundary value problems if the fragmentation takes place.

• Accuracy control by means of restriction of strain increments is needed because
of wide range of possible damage process rates regardless of the loading rate.



Questions for future research

 Comparison of various theoretical approaches to damage simulation

Damage theories

Gradient theories

Elasto-visco-plastic models

   Choice of damage parameter

Formulation of damage criterion

      Role of damage kinetics

      Dependence of elasticity on damage

Error estimate studies

Stability and convergence of numerical solutions are still hot problems.

Optimization of numerical models

3-D damage modelling
  ADJUSTMENT OF THEORY AND EXPERIMENT



THE END


