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Abstract  

The equations for layered medium with slip at layer boundaries are obtained using the 

asymptotic method of homogenization and taking into account the second order terms 

respectively the small parameter of layer thickness.  Slip condition defines the dependence 

between tangential jumps of displacements and the shear stresses at interlayer boundaries. The 

derived equations introduce asymptotically complete unification of several models for layered 

media based on the engineering approach or approximate hypotheses about the nature of 

interlayer deformation. The proposed equations are used to investigate wave propagation 

properties and dispersion relations for harmonic waves. The Rayleigh surface wave  motion 

along the elastic layered half-plane boundary is investigated.  

 
The interest to the problem of propagation and transformation of waves in layered media is  

associated with problems in seismology and engineering geophysics. The seismicity is 

observed in rocks with regular grid of cracks that can be considered as layered media. 

Classical studies of wave fields in such media usually are based on assumption of continuity 

of displacement fields. But for rather strong seismic actions the possibility of tangential 

displacement jumps at the interlayer boundaries should be taken in to account. For long time 

actions it needs to use the «averaged» models of structured continuum media because of 

impossibility to trace deformations of each structural layer.  

In our study by using asymptotic method [1,2] the averaged equations of layered medium 

with slippage are derived. The second order terms relatively small parameter of layer 
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thickness are taken in to account. The linear slip relation between tangential displacement 

jumps at interlayer boundaries and shear stresses is used.  The zero order approximate 

equations for such media has been derived earlier in [3,4]. The proposed here new equations 

represent complete generalization of layered media models [5-6], which are based on 

engineering approaches or on approximate hypotheses about layer deformations. Such 

generalized models are required for static and dynamic problems of rock media deformations 

and for dynamic wave propagation problems in geophysics. It should be noted also that the 

theory of layered media is suitable for description of composite materials with soft (rubber) 

sub-layers between major more rigid (metallic) layers. 

The properties of proposed refined system of equations are studied. The propagation of 

longitudinal, transversal and surface Rayleigh waves in layered media is investigated in 

refined settings.  

 

1.  Refined equations 

Consider infinite layered medium using rectangular Cartesian system of coordinates 1x , 2x  

and 3x . The axis 3x  is perpendicular to the plane parallel layer interfaces. Let the interfaces 

have coordinates ( )
3

sx x sε= =  (s=0, 1, 2± ± ,…), where constant layer thickness ε <<1 is a 

small parameter. To say more exactly, the relation / 1lε <<  should be valid, here l  is the size 

of distributed load application range, for instance, wave length in the processes under 

consideration. In such case all spatial values should be made dimensionless using this valuel . 

Assume that layer boundaries are always compressed and the following conditions are valid: 

33 0σ < , 3[ ]u = 3[ ]γσ = 33[ ]σ =0.  

Here  

3 *[ ]k uγ γσ =   

is linear slippage of Winkler type, * (1)k k Oε = = . Square brackets 

( ) ( )0 0
[ ] s sx x

f f f
+ −

= − designate the jump of a value f at inter-layer boundary. Such conditions 

are valid approximately if between layers the soft sublayers of thickness δ  ( / 1δ ε << ) with 

small shear modulus δµ .are present. In this case we have:  

3

[ ] [ ]
[ ] /

u uk
k u γ γ

γ γ δ
δσ ε µ
ε δ δ

= = =  
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Here [ ] /uγ δ  is shear deformation of soft sublayer. In this case /kδµ δ ε=  or wise versa 

/k δµ ε δ= . It is possible to say that k  is inter-layer shear connection coefficient. The layers 

themselves are elastic isotropic and subjected to Hooke’s law: 

( )
3

sx x≠ :  , , 0ij j i ttuσ ρ− = ,  ,ij ijkl k lC uσ =  

From now on, for compactness of the formulae differentiation is denoted as: 

, /i if f x= ∂ ∂ , , /tf f t= ∂ ∂  

Here the elastic moduli tensor is: 

( )ijkl ij kl ik jl il jkC λδ δ µ δ δ δ δ= + +  

According to the method of asymptotic averaging [1] let’s introduce «fast» 

variable 3 /xξ ε= . According to [1] assume that ( , , )k k lu u x tξ=  is a function, which is 

smooth regarding «slow» variables lx  and continuous regarding «fast» variable ξ , excluding 

points (s) ( ) /sxξ ε= , where it may have jumps of first kind. Besides, along ξ  the 

displacement is 1-periodic (s) (s)1/2 1/2
[[ ]] 0i i iu u uξ ξ+ −

= − = . Accounting such choice of variables 

and the differentiation rule for complex functions, the system of equations for cell of 

periodicity ( ) ( )
31/ 2 1/ 2s sx x x− ≤ ≤ + , 1/ 2 1/ 2ξ− ≤ ≤  may be rewritten as 

( )
3

sx x≠ , 0ξ ≠ :  2 1
3 3 , 3 , 3 , , ,( ) 0i k k ijk k j i kl k l ijkl k lj i ttC u C u C u C u uξξ ξ ξε ε ρ− −+ + + − =  

The contact conditions are  

  ( )
3

sx x= , 0ξ = :  1
33 3 , 33 , 0k k kl k lC u C uξε − + <  

  3[ ]u =0,      1
3 3 , 3 ,[ ] 0i k k i kl k lC u C uξε − + = ,  1

3 3 , 3 , *[ ]k k kl k lC u C u k uγ ξ γ γε − + =  

The conditions of 1-periodicity are 

1/21/2
[[ ]] 0i i iu u u ξξ −+

= − =  .   

Here and farther greek indices (β ,γ ) take values 1 and 2, latine indices take values 1, 2, 3.  

The displacements are represented as asymptotic series regarding small parameterε : 

(0) (1) 2 (2) 3 (3)( , , ) ( , , ) ( , , ) ( , , ) ...i i k i k i k i ku u x t u x t u x t u x tξ ε ξ ε ξ ε ξ= + + + +  
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Introduce the operation of «averaging» f  for the function of «fast» variableξ , which will 

be odten used farther: 
1/2

1/2

f fdξ
−

= ∫ . Displacement approximations should satisfy the 

additional condition (n) 0ku =  [1]. 

Substitute this representation into the theory of elasticity equations. Equating to zero the term 

with negative power 2ε −  we get that zero approximation (0)
iu  is independent on the «fast» 

variable ξ  and (0) ( , )i i ku w x t= . Equating to zero the term with negative power 1ε −  we get that 

first approximation (1)
iu  satisfies the equation (1)

3 3 , 0i k kC u ξξ = . The resulting system of 

differential equations is: 

(1) (1) (2)
, 3 , 3 , 3 3 , ,( )ijkl k jl ijk k j i kl k l i k kC w C u C u C uξ ξ ξ+ + + +  

(1) (2) (2) (3)
, 3 , 3 , 3 3 , ,( )ijkl k jl ijk k j i kl k l i k kC u C u C u C uξ ξ ξε  + + + + +   

2 (2) (3) (3) (4) (1) 2 (2)
, 3 , 3 , 3 3 , , , , ,( ) ... ...ijkl k jl ijk k j i kl k l i k k i tt i tt i ttC u C u C u C u w u uξ ξ ξε ρ ερ ε ρ + + + + + = + + +   

A similar representation for stress tensor components is: 

(0) (1) 2 (2) ...ij ij ij ijσ σ εσ ε σ= + + +  

где (n) (n) (n 1)
, 3 ,ij ijkl k l ijk kC u C u ξσ += + . 

All approximations for stresses are 1-periodic functions of ξ . In particular, the relation 

(n) (n) (n 1)
3 3 , 3 3 ,i i kl k l i k kC u C u ξσ += +  and conditions (n)

3[ ] 0iσ = , (n)
3[[ ]] 0iσ =  are valid. It is easy to see 

that (n)
3 , 0i ξσ = . 

Accounting the terms of definite order of ε , applying the averaging operation f and 

excluding the dependence on «fast» variable ξ , we get the model of averaged layered 

medium with slippage of Winkler type. 

Let’s derive the refined theory of second order. For this in the system of equations we keep 

the terms of order2ε . Applying averaging operation for periodicity cell to the system of 

equations we get the following: 

(1) (2) 2 (3)
, 3 , 3 , 3 , ,, , ,ijkl k jl ijk k ijk k ijk k i ttj j j

C w C u C u C u wξ ξ ξε ε ρ+ + + =  
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It is the final averaged system of equations for layered medium with slippage. For complete 

formulations it needs to find the functions (n)
,ku ξ (n=1,2,3), which participate in the system. 

Every function (n)( , , )i ku x tξ  (n=1,2,3) is found from the appropriate task on «periodicity cell» 

( 1/ 2 1/ 2ξ− ≤ ≤ ) [1], which is formulated by equating to zero the sum of terms of definite 

order 1nε −  in asymptotic system of equations. Additional conditions for these functions can be 

received by reformulationg the contact inter-layer conditions for each function: conditions of 

1-periodicity  (n)[[ ]] 0iu =   and conditions (n) 0iu = . Let’s formulate these three tasks for the 

cell ( 1/ 2 1/ 2ξ− ≤ ≤ ). 

1.1 Task in cell for n=1 

At 1/ 2ξ < : (1)
3 3 , 0i k kC u ξξ = . 

At 0ξ = :   (1)
3 3 ,[ ] 0i k kC u ξ = ,   (1)

3[ ] 0u = ,   (1) (1)
3 , 3 3 ,[ ] kl k l k kk u C w C uγ γ γ ξ= + . 

Additional conditions are:    (1)[[ ]] 0iu = ,  (1) 0iu = . 

Dropping details, published in [7], write the solution of task 1 on the piriodicity cell:    

(1) ( / 2)u signγ γϕ ξ ξ= − , (1)
3 0u = ,      где / ( )kγ γϕ τ µ= − + ,  ,3 3,( )w wγ γ γτ µ= + .  

The derivatives needed for averaging are: 

(1)
3, 0u ξ = ,  (1)

,uγ ξ γϕ= ,  (1)
3, 0u ξ = ,  (1)

,uγ ξ γϕ=  . 

 

1.2 Task on cell for n=2 

At  1/ 2ξ < :  (1) (1) (2)
, 3 , 3 , 3 3 , , ,( )ijkl k jl ijk k j i kl k l i k k i ttC w C u C u C u wξ ξ ξ ρ+ + + = . 

Averaging this differential equation and accounting that (1) (2)
3 , 3 3 , ,( ) 0i kl k l i k kC u C u ξ ξ+ =  and that 

the rest terms of this equation do not depend on ξ , we get its simple consequence: 

(2) (1)
3 3 , 3 ,i k k i kl k lC u С uξξ ξ= −  

At   0ξ = :  (2) (1)
3 3 , 3 ,[ ] [ ]i k k i kl k lC u С uξ = − ,    (2)

3[ ] 0u = ,   (2) (1) (2)
3 , 3 3 ,[ ] kl k l k kk u C u C uγ γ γ ξ= + . 

Additional conditions:   (2)[[ ]] 0iu = , (2) 0iu = . 

Dropping details (see in [7]), write the solution of task 2 on periodicity cell: 

(2) 2( 1/ 6) / 2u signγ γψ ξ ξ= − − + ,   (2) 2
3 3( 1/ 6) / 2u signψ ξ ξ= − − +  
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Here   ,3γ γψ ϕ= ,   3 , / ( 2 )β βψ λϕ λ µ= +  

Derivatives needed for averaging are: 

(2)
, ( 1/ 2)uγ ξ γψ ξ= − ∓ ,  (2)

3, 3( 1/ 2)u ξ ψ ξ= − ∓ , (2)
3, 0u ξ = ,  (2)

, 0uγ ξ =  

Hence second approximations for displacements are absent in averaged system of equations. 

 

1.3 Task on cell for n=3 

At 1/ 2ξ < :    (3) (1) (2) (2) (1)
3 3 , , 3 , 3 , ,i k k ijkl k jl i kl k l ijk k j i ttC u С u С u С u uξξ ξ ξ ρ= − − − +  

At   0ξ = : (3) (2)
3 3 , 3 ,[ ] [ ]i k k i kl k lC u С uξ = − ,    (3)

3[ ] 0u = ,    (3) (2) (3)
3 , 3 3 ,[ ] kl k l k kk u C u C uγ γ γ ξ= + . 

Additional conditions: (3)[[ ]] 0iu = ,   (3) 0iu =  

 

1.4 Solution of task 3 

a) Solution for displacement components for i γ= . 

The elasticity moduli tensor is: 

(1) (1) (1) (1) (1)
, , , , ,( ) ( )ijkl k jl j l jl j l jl l j jl llС u С u u u uγ β β γ β γβ γ β β β βγ γλδ δ µδ δ µδ δ λ µ µ= = + + = + +  

( )(2) (2) (2) (2)
3 3 , 3 3 , 3, , 3( ) ( ) 2 ( ) 2kl lk k l l k k l k lC C u u u uγ γ ξ γ γ ξ ξγ γ ξλ µ δ δ µδ δ λ µ µ+ = + + = + +  

Task equation for 1/ 2ξ <  is: 

(3) (1) (1) (2) (2) (1)
, , , , 3 3, ,( ) / 2 ( ) / /ll i ttu u u u u uγ ξξ γ β βγ γ ξ ξγλ µ µ λ µ µ ρ µ= − + − − + +          

0ξ = :   (3) (2) (2)
, ,3 3,[ ] [ ] 0u u uγ ξ γ γ= − + = , (3) (2) (2) (3)

,3 3, ,[ ] ( )k u u u uγ γ γ γ ξµ= + + ,  (3)[[ ]] 0uγ = ,  (3) 0uγ = . 

The equation may be rewritten as  

( )(3)
, / 2u signγ ξξ γχ ξ ξ= −  

Here , , ,3 3, ,( ) / 2 ( ) / /ll ttγ γ β βγ γ γ γχ ϕ λ µ ϕ µ ψ λ µ ψ µ ρϕ µ= − − + + + + + . 

Integrating and accounting conditions for 0ξ = , we get [7]: 

( ) ( )(3) 2
, ,3 3,/ 2 / ( ) /12u sign k kγ ξ γ γ γ γχ ξ ξ χ µψ µψ µ= − + + + +  

Finally the expression for averaged derivative is: 

( )(3)
, , , ,(3 2 ) / ( 2 ) / / ( ) /12ttu kγ ξ γ ββ β βγ γµ ϕ λ µ ϕ λ µ ρϕ µ µ= + + + − +  

б) Solution for displacement components for 3i = . 

The elasticity moduli tensor is: 
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(1) (1) (1) (1)
3 , 3 , 3 3 3 , , 3( ) ( )jkl k jl j l jl j l jl l j jlС u С u u uβ β β β β β β βλδ δ µδ δ µδ δ λ µ= = + + = +  

( )(2) (2) (2) (2)
33 3 3 , 3 3 , 3, 3 ,( ) ( 3 ) ( ) 2( 2 ) ( )kl lk k l l k kl k lC C u u u uξ ξ ξ β ξβλ µ δ δ λ µ δ λ µ λ µ+ = + + + = + + +  

Task equation for 1/ 2ξ < is: 

(3) (1) (2) (2)
3, , 3 3, 3 ,( ) / ( 2 ) 2 ( ) / ( 2 )u u u uξξ β β ξ β ξβλ µ λ µ λ µ λ µ= − + + − − + + .  

0ξ = : (3) (2) (2)
3, 3,3 ,[ ] [ ] [ ] / ( 2 ) 0u u uξ β βλ λ µ= − − + = , (3)

3[ ] 0u = , (3)
3[[ ]] 0u = ,  (3)

3 0u = . 

The equation may be rewritten as: 

( )(3)
3, 3 / 2u signξξ χ ξ ξ= −    

Here 3 , 3,3 , 3( ) / ( 2 ) 2 ( ) / ( 2 )β β β βχ λ µ ψ λ µ ψ λ µ ϕ λ µ= + + + − + + . 

Integrating and accounting conditions for 0ξ =  we get [7]: 

(3) 2
3, 3( 1/ 6) / 2u signξ χ ξ ξ= − + , (3)

3, 0u ξ = . 

Finally the expressions for averaged derivatives are: 

( )
(3)
, , , ,

1 3 2

12 2 ttu
kγ ξ γ ββ β βγ γ

µ λ µ ρϕ ϕ ϕ
µ λ µ µ

 += + − + + 
,  (3)

3, 0u ξ = . 

 

2. Variants of averaged system of equations 

 

Now we can formulate the refined system of equations for layered medium with slippage 

(latine indices i, j, k, l =1, 2, 3; greek indicesβ ,γ =1,2): 

(1) 2 (3)
, 3 , 3 , ,, ,jkl k jl jk k jk k ttj j

C w C u C u wγ γ ξ γ ξ γε ρ+ + =  

(1) 2 (3)
3 , 3 3 , 3 3 , 3,, ,jkl k jl jk k jk k ttj j

C w C u C u wξ ξε ρ+ + =  

Accounting the elastic moduli tensor the terms of this system of equations are written as: 

, , ,( )jkl k jl k k kkC w w wγ γ γλ µ µ= + + ,             3 , , 3 3,( )jkl k jl k k kkC w w wλ µ µ= + +      

(1) (1)
3 , 3 , ,3, ,jk k jj j

C u C uγ ξ γ β β ξ γµϕ= = ,        (1) (1)
3 3 , 3 3 , ,, ,jk k jj j

C u C uξ β β ξ β βµϕ= =  

( )(3) (3) 2
3 , , , 3 , 3 , 3, ,3

(3 2 ) / ( 2 ) / / ( ) /12jk k ttj
C u u kγ ξ γ ξ γ ββ β βγ γµ µ ϕ λ µ ϕ λ µ ρϕ µ µ= = + + + − +  

( )(3) (3) 2
3 3 , , , ,, ,

4( ) / ( 2 ) / / ( ) /12jk k ttj
C u u kξ β ξ β βαα β ββ

µ λ µ ϕ λ µ ρϕ µ µ= = + + − +  

Finally refined system of equations is: 
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( )2 2
, , ,3 , 3 , 3 , 3 ,( ) (3 2 ) / ( 2 ) / / ( ) /12k k kk tt ttw w k wγ γ γ γ ββ β βγ γ γλ µ µ µϕ ε µ ϕ λ µ ϕ λ µ ρϕ µ µ ρ+ + + + + + + − + =  

( )2 2
, 3 3, , , , 3,( ) 4( ) / ( 2 ) / / ( ) /12k k kk tt ttw w k wβ β β βαα β βλ µ µ µϕ ε µ λ µ ϕ λ µ ρϕ µ µ ρ+ + + + + + − + =  

Remind that ,3 3,( ) / ( )w w kγ γ γϕ µ µ= − + + . In general equations the expressions for γϕ  are not 

substituted to avoid the unnecessary complexity of formulas. It is seen that regarding spatial 

variables this is the system of forth order for the displacements kw  and it contains mixed time 

derivatives. 

The system of equations is simplified for the case of ideal slipping contact between 

layers 0k = . 

( )2
, , ,3 , 3 , 3 , 3 ,( ) (3 2 ) / ( 2 ) / /12k k kk tt ttw w wγ γ γ γ ββ β βγ γ γλ µ µ µϕ ε µ ϕ λ µ ϕ λ µ ρϕ µ ρ+ + + + + + + − =  

( )2
, 3 3, , , , 3,( ) 4( ) / ( 2 ) / /12k k kk tt ttw w wβ β β βαα β βλ µ µ µϕ ε µ λ µ ϕ λ µ ρϕ µ ρ+ + + + + + − =  

,3 3,( )w wγ γ γϕ = − +  

Separately we formulate plane (2D) dynamic system of equations: 

 

( ) ( )
2 3 2 2

1,11 3,13 1,33 1,1133 3,3111 1,33 3,31 1,2 2

( )
( 2 )

3( ) ( 2 ) 12( ) tt tt tt

k k
w w w w w w w w

k k k k

µ µ ε µ λ µ ε µλ µ λ ρ ρ
µ µ µ λ µ µ

  ++ + + + − + + + = + + + + + 

 

 

( ) ( )
2 3 2 2

3,33 1,13 3,11 1,1113 3,1111 1,13 3,11 3,2 2

( )
( 2 )

3( ) ( 2 ) 12( ) tt tt tt

k k
w w w w w w w w

k k k k

µ µ ε µ λ µ ε µλ µ λ ρ ρ
µ µ µ λ µ µ

  ++ + + + − + + + = + + + + + 

 

 

Quasi-static 2D system of equations is: 

 

( )
2 3

1,11 3,13 1,33 1,1133 3,31112

( )
( 2 ) 0

3( ) ( 2 )

k k
w w w w w

k k k

µ µ ε µ λ µλ µ λ
µ µ µ λ µ

  ++ + + + − + = + + + + 
 

( )
2 3

3,33 1,13 3,11 1,1113 3,11112

( )
( 2 ) 0

3( ) ( 2 )

k k
w w w w w

k k k

µ µ ε µ λ µλ µ λ
µ µ µ λ µ

  ++ + + + − + = + + + + 
 

 

And finally 1D dynamic or quasi-static system of equations for bending of layered massiv 

(case 1 0w = , 3 3 1( , )w w x t= ) takes the view: 
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2 3 2 2

3,1111 3,11 3,11 3,2 2

( )
0

3( ) ( 2 ) 12( ) tt tt

k
w w w w

k k k

ε µ λ µ µ ε µρ ρ
µ λ µ µ µ

+ − − + =
+ + + +

  (dynamics) 

or 

2 3

3,1111 3,112

( )
0

3( ) ( 2 )

k
w w

k k

ε µ λ µ µ
µ λ µ µ

+ − =
+ + +

  (quasi-statics) 

 

Formulas for stress tensor components are: 

 

(0) (1)
, 3 ,ij ijkl k l ijk kC w C u ξσ = + ,   (0)

, , . 3 3( ) ( )ij ij k k i j j i i j j iw w wσ λδ µ µ ϕ δ ϕ δ= + + + +  

 

(1) (1) (2)
, 3 ,ij ijkl k l ijk kC u C u ξσ = + ,    ( )(1)

, , . 3 3 3( ) ( ) ( 1/ 2)ij ij k k i j j i ij i j j iσ λδ ϕ µ ϕ ϕ λδ ψ µ ψ δ ψ δ ξ= + + − − + ∓  

 

Here 3 0ϕ = ,   ,3 3,( ) / ( )w w kγ γ γϕ µ µ= − + + ,    ,3γ γψ ϕ= ,    3 , / ( 2 )β βψ λϕ λ µ= + . 

 

Boundary conditions for loaded surface are: 

(0)
ij j in Pσ ⋅ =    ,    (1) 0ij jnσ ⋅ = . 

In some problems for definite orientations of boundary normal vector the boundary condition 

of first order converts into identity. In this cases the boundary condition of second order 

should be used (2) 0ij jnσ ⋅ = . 

 

3. Wave properties of layered medium with slippage at inter-layer boundaries 

 

3.1. Plane harmonic waves 

 

Let’s define the properties of harmonic waves propagating in arbitrary direction regarding 

layer orientation at arbitrary inter-layer connection coefficient k .  2D dynamic system of 

eqiuations for the medium under consideration is 

( ) ( )
2 3 2 2

1,11 3,13 1,33 1,1133 3,3111 1,33 3,31 1,2 2

( )
( 2 )

3( ) ( 2 ) 12( ) tt tt tt

k k
w w w w w w w w

k k k k

µ µ ε µ λ µ ε µλ µ λ ρ ρ
µ µ µ λ µ µ

  ++ + + + − + + + = + + + + + 
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( ) ( )
2 3 2 2

3,33 1,13 3,11 1,1113 3,1111 1,13 3,11 3,2 2

( )
( 2 )

3( ) ( 2 ) 12( ) tt tt tt

k k
w w w w w w w w

k k k k

µ µ ε µ λ µ ε µλ µ λ ρ ρ
µ µ µ λ µ µ

  ++ + + + − + + + = + + + + + 

 

 

These equations may be rewritten as 

 

( ) ( )2 2
1,11 3,13 1,3 3,1 ,3 1 1,3 3,1 2 1,3 3,1 1,,113 ,3

( 2 ) ( ) tttt
w w w w w w w w wλ µ λ µ ε µβ ρε β ρ+ + + + − + + + =ɶ  

( ) ( )2 2
3,33 1,13 1,3 3,1 ,1 1 1,3 3,1 2 1,3 3,1 3,,111 ,1

( 2 ) ( ) tttt
w w w w w w w w wλ µ λ µ ε µβ ρε β ρ+ + + + − + + + =ɶ  

 

Introduce the additional variables 

1,3 3,1U w w= +  

2 2
1 ,11 2 ,ttV u u uµ ε µβ ρε β= − +ɶ  

The the system of equations takes the following view 

( )1,11 1, 3,13 ,3( 2 ) 0ttw w w Vλ µ ρ λ+ − + + =  

( )1,13 3,33 3, ,1( 2 ) 0ttw w w Vλ λ µ ρ+ + − + =  

1,3 3,1 0w w U+ − =  

2
2 * ,11 ,( ) 0ttu u u Vµ ε β µ ρ− + − =ɶ  

Here introduced the following designations 

k

k
µ µ

µ
=

+
ɶ ,    

k

µβ
µ

=
+

,   2
1 / 3

2

λ µβ β
λ µ

+=
+

,    2
2 /12β β= ,   * 1 2/µ µβ β=  

We seek the solution of this system of equations as harmonic waves propagating in the 

direction 1 3( , )n n=n  with frequency ω  and wave number 1 3( , )κ κ κ= =κ n : 

1 1 3 3( )
1

i x x tw Ae κ κ ω+ −= ,  1 1 3 3( )
3

i x x tw Be κ κ ω+ −= ,  1 1 3 3( )i x x tU Ce κ κ ω+ −= ,  1 1 3 3( )i x x tV De κ κ ω+ −= . 

Here 1 1nκ κ= , 3 3nκ κ= , κ=κ , 1=n , 2 / lκ π= is the wave number,l is harmonic wave 

length, ( )2 / lεκ π ε= ,  ( )22 2 24 / lε κ π ε= . The value / lε <<1 is a small parameter. In result 

we get the system of homogeneous algebraic equations 
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( )2 2 2
1 3 1 3( 2 ) ( ) 0A Bε ελ µ κ µ κ ρω λ µ κ κ+ + − + + =

( )2 2 2
1 3 3 1( ) ( 2 ) 0A Bε ελ µ κ κ λ µ κ µ κ ρω+ + + + − =  

Here 2 2 2
2 * 1( )εµ µ ε β µ κ ρω= + −ɶ . Condition of the solvability for this algebraic system gives 

the equation for propagation velocities of harmonic waves in the medium under consideration: 

4 2 2 2
1 3

( )( )
1 4 0

( 2 ) ( 2 ) ( 2 ) ( 2 )
n nε ε εµ µ µ µλ µζ ζ

λ µ λ µ λ µ λ µ
  −+− + + + = + + + + 

 

 

Here 2 2 2 2
1/ ( 2 ) /с c cζ ρ λ µ= + = ,  /с ω κ=  is the phase velocity of wave propagation in 

layered medium, 1 ( 2 ) /c λ µ ρ= +  and 2 /c µ ρ=  are velocities of elastic longitudinal   

and transverse waves in a homogeneous elastic medium. 

Let α  ( 1 sinn α= ) is the angle of wave propagation direction. For some values of α  the 

biquadratic equation has exact solution.  

At 0α = : 1 1ζ =  for quasi-longitudinal wave, 2 2
2 2( 2 )(1 )ζ µ λ µ ε κ β= + +ɶ  for quasi-

transversal wave. 

At / 4α π= : 2 2 2 2
1 2 * 2( / 2) ( 2 )(1 )ζ λ µ µ ε κ β µ λ µ ε κ β= + + + + +ɶ  for quasi-longitudinal 

wave,  2 ( 2 )ζ µ λ µ= +  for quasi-transversal wave. 

At / 2α π= : 1 1ζ =  for quasi-longitudinal wave,  2 2 2 2
2 2 * 2( ) ( 2 )(1 )ζ µ ε κ β µ λ µ ε κ β= + + +ɶ  

for quasi-transversal wave. 

At arbitrary α  the solution of this equation may be sought in assumed approximation 2~ ε  as 

2 2 2 2 2
0 * ( )oζ ζ ζ ε ε= + +  

Zero approximation 2
0ζ ζ=  is found from equation: 

4 2 2
0 0

( ) ( )
1 sin 2 0

( 2 ) ( 2 ) ( 2 ) ( 2 )

µ µ λ µ µ µζ ζ α
λ µ λ µ λ µ λ µ

  + −− + + + = + + + + 

ɶ ɶ ɶ
 

Values 2
0ζ , which correspond to quasi-lingitudinal and quasi-transversal waves in layered 

medium, are: 

( )2
0 00.5 1 / ( 2 ) Dζ µ λ µ= + + ±ɶ  

Here 
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2 2

0 2 2

( ) ( ) ( ) ( )
2 cos 4

( 2 ) ( 2 ) ( 2 ) ( 2 )
D

λ µ λ µ µ µ µ µα
λ µ λ µ λ µ λ µ

+ + − −= + +
+ + + +

ɶ ɶ
 

The correction coefficient  2
*ζ  is: 

1

2 2 2 2 2 2 2*
* 2 0 0 0( cos 2 ) sin 2 1

( 2 ) ( 2 )

µ µζ β κ ζ α α ζ ζ
λ µ λ µ

−
    

= − − − +    + +    

ɶ
 

Approximate values of phase velocities with accuracy 2ε  are 

2 2 2 2 2 2 2*
0 2 0 0 0 01 ( cos 2 ) sin / (2 )

( 2 )
D

µζ ζ κ ε β ζ α ζ α ζ
λ µ

  
≈ ± − −  +  

 

From these formulas it is seen that the velocities of harmonic waves have small dispertion 

( 2 2~ κ ε ) and depend on the wave direction parameterα . 

Now investigate the limit cases of these formulas at 0ε →  ( εµ µ→ ɶ ). Firstly it is the limit 

case of ideal inter-layer contact (case of homogeneous elastic medium): k → ∞ ( µ µ→ɶ ), and 

secondly it is the limit case of ideal inter-layer slipping 0k →  ( 0µ →ɶ ). 

Quasi-longitudinal waves (sign plus in formulas for 0ζ  and ζ ). 

In this case for 0ε → : 0ζ ζ→ . 

Fork → ∞ :  0 1ζ →  ( 1с с→ ), (elastic longitudinal wave in isotropic medium). 

For 0k →  :  ( )2
0 10.5 1 Dζ → +  

Here  

2 2

1 2 2 2

( ) 2( )
cos 4

( 2 ) ( 2 ) ( 2 )
D

λ µ λ µ µ µα
λ µ λ µ λ µ

+ += + +
+ + +

 

For 0, / 2α π= : 0 1ζ → , 1с с→ , (waves along and cross layers). 

For / 4α π= : 0 ( ) / ( 2 )ζ λ µ λ µ→ + + , (waves propagated under an angle to the layer 

boundary direction, minimal propagation velocity).  

Quasi-transversal waves (sign minus in formulas for 0ζ  andζ ). 

In this case for 0ε → : 0ζ ζ→ . 

Fork → ∞ :  2 1/с сζ →  ( 2с с→ ), (elastic transversal wave in isoytropic medium). 

For 0k → : ( )2
0 10.5 1 Dζ → − . 
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For 0, / 2α π= : 0 0ζ → , 0с→ , (waves along and cross layers). 

For / 4α π=  : 0 2 1/с сζ → , 2с с→ , (waves propagated under an angle to the layer boundary 

direction, maximal propagation velocity). 

The dependence of propagation velocities for quasi-longitudinal anf quasi-transversal waves 

on coefficients of inter-layer connection k  are shown in Fig. 1. Upper graphs correspond to 

quasi-longitudinal waves, lower graphs correspond to quasi-transversal waves at various 

values of small parameter / lε =0.5, 0.3, 0.1. Dimensionless elastic moduli are defined as 

/ ( 2 ) / ( 2 ) 1/ 3λ λ µ µ λ µ+ = + = . 

Above each graph the value of wave direction angle α =0, 300, 600, 900 is shown. For α =0, 

900 the solutions are described by axact formulas given above and shown in Fig. 1a and 1d. 

For other values of α  the solution of biquadratic equation for 1/с cζ =  is calculated 

numerically and shown in Fig. 1b and 1c. 
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Fig. 1 

 

From these graphs the level of plane wave dispertion can be seen (for small values of the 

coefficient of inter-layer connection) for various wave directions. The dependence of 

dispertion on the layer thickness parameter / lε  can also be seen there. It is possible to 

conclude that the dispertion plays role only for dimentionless coeffitients of inter-layer 

connection / ( 2 )k λ µ+ <0.7. It is mostly significant for directions α =900 (along layers) of 

quasi-transversal waves (see Fig. 1d, lower graphs). 

 

3.2.  Surface Rayleigh waves 

 

Consider surface waves on the boundary of layered half-plane 3 0х−∞ < ≤ , 1х−∞ < < ∞  

(plane task). The system of equations for displacements of layered medium with slippage at 

inter-layer boundaries is written earlier 

( )1,11 1, 3,13 ,3( 2 ) 0ttw w w Vλ µ ρ λ+ − + + = ,   ( )1,13 3,33 3, ,1( 2 ) 0ttw w w Vλ λ µ ρ+ + − + = , 

1,3 3,1 0w w U+ − = ,   2
2 * ,11 ,( ) 0ttu u u Vµ ε β µ ρ− + − =ɶ  

Boundary conditions at3 0х =  

33 3,3 1,1( 2 ) 0w wσ λ µ λ= + + = ,   13 1,3 3,1( ) 0w wσ µ= + =  

At 3х → −∞     1 0w → , 3 0w → . 

Represent the solutions of this task as surface wave, γ >0  
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3 1 1( )
1

x i x tw Ae eγ κ ω−= ,  3 1 1( )
3

x i x tw Be eγ κ ω−= . 

Substituting this representation in to the system of differential equations we get the algebraic 

homogeneous system of equations 

( )2 2
1 1 1( ) 0A i Bε εµ γ κ λ µ γ κ− ∆ + + =  

( )2 2 2
1 1 2 1( ) ( 2 ) 0A i Bε εκ λ µ γ λ µ γ κ κ− + + + − ∆ =  

Here the following designations are used 

2 2
2 1 *εµ µ ε β κ= + ∆ɶ ,  2

* * сµ ρ∆ = − ,   2
1 2 сλ µ ρ∆ = + − , 2 2

2 2 2 1 *ε ε β κ∆ = ∆ + ∆ ,   2
2 сµ ρ∆ = −ɶ , 

Phase velocity of surface wave is 1/с ω κ= . The solvability condition gives the biquadratic 

equation forγ  

( )4 2 2 2 4
1 2 1 1 1 2( 2 ) ( 2 ) ( ) 0ε ε ε ε ελ µ µ γ κ γ µ λ µ λ µ κ+ − ∆ + + ∆ − + + ∆ ∆ =  

From this equation we find two positive solutions1,2 0γ >  

( ) ( )22 2 2
1 2 1 2 1 1 2

2
1,2

( 2 ) ( ) ( 2 ) ( ) 4( 2 )

2( 2 )

ε ε ε ε ε ε ε ε

ε

κ µ λ µ λ µ µ λ µ λ µ λ µ µ
γ

λ µ µ

 ∆ + + ∆ − + ± ∆ + + ∆ − + − + ∆ ∆ 
 =

+
 

Then the solutions of task are 

1 3 2 31 1 1 1( ) ( )
1 1 2

x xi x t i x tw A e e A e eγ γκ ω κ ω− −= +  

1 3 2 31 1 1 1( ) ( )
3 1 2

x xi x t i x tw B e e B e eγ γκ ω κ ω− −= +  

Where ( )
1,2 1,22

1 1,2 1 2 2
1,2 1 2

( )

( 2 )

A
i B ε

ε

λ µ γ
κ κ

λ µ γ κ
+

=
+ − ∆

 

Substituting these solution into boundary conditions at 3 0х =  get the system of equations 

1 1 2 2 1 1 1 2 0A A i B i Bγ γ κ κ+ + + =  

2 2
1 1 1 2 1 1 1 2 1 2( 2 ) ( 2 ) 0A A i B i Bλκ λκ λ µ γ κ λ µ γ κ− − + + + + =  

From this system of equations the amplitudes 1B  and 2B  may be excluded. Then we have two 

homogeneous equations regarding amplitudes 1A  and 2A . For simplification of expressions in 
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stead of 1,2 0γ >  introduce values 1,2η  from relations 1,2 1,2 1/η γ κ= . These values are defined 

by formulas 

( )22 2
2 1 2 1 1 22

1,2

( 2 ) ( ) ( 2 ) ( ) 4( 2 )

2( 2 )

ε ε ε ε ε ε ε ε

ε

µ λ µ λ µ µ λ µ λ µ λ µ µ
η

λ µ µ
∆ + + ∆ − + ± ∆ + + ∆ − + − + ∆ ∆

=
+

 

Homogeneous system of equations for amplitudes 1A  and 2A  is 

( ) ( )1 1 2 22 2
1 2 2 2

( ) ( )
1 1 0

( 2 ) ( 2 )
A Aε ε

ε ε

λ µ λ µη η
λ µ η λ µ η

   + +
   + + + =
   + − ∆ + − ∆   

 

 

( ) ( )
2 2

1 2
1 22 2

1 2 2 2

( 2 )( ) ( 2 )( )
0

( 2 ) ( 2 )
A Aε ε

ε ε

λ µ λ µ η λ µ λ µ ηλ λ
λ µ η λ µ η

   + + + +
   − + − =
   + − ∆ + − ∆   

 

 

For solvability the determinant of this system should be equal to zero. It gives the equation for 

unknown phase velocity of surface wave 1/с ω κ=  

( )2 2 2 2
1 2 2 2 1 24( ) (1 ) ( 2 )λ µ η η η η λ µ η λη+ − + + + −  

                                                   ( ) ( ){ }2 2 2
1 2 2 2 1( 2 ) (1 ) ( 2 ) 0εµ η λ µ η λ η η λ µ η λ

µ
∆− + + + + + + =  

Here we denote ε εµ µ µ∆ = − . Again investigate the limit cases of this formula at 0ε →  

( εµ µ→ ɶ ). In these cases 

( )22 2
2 1 2 1 1 22

1,2

( 2 ) ( ) ( 2 ) ( ) 4( 2 )

2( 2 )

µ λ µ λ µ µ λ µ λ µ λ µ µ
η

λ µ µ
∆ + + ∆ − + ± ∆ + + ∆ − + − + ∆ ∆

=
+

ɶ ɶ ɶ ɶ ɶ

ɶ
 

The equation for surface wave propagation velocity is 

( )2 2 2 2
1 2 2 2 1 24( ) (1 ) ( 2 )λ µ η η η η λ µ η λη+ − + + + −  

                                              ( ) ( ){ }2 2 2
1 2 2 2 1( 2 ) (1 ) ( 2 ) 0

( )k

µ η λ µ η λ η η λ µ η λ
µ

− + + + + + + =
+

 

Case of ideal contact (ideal elastic medium)  

In this case at k → ∞   ( µ µ→ɶ ):  
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2 2 2
1 11 /с cη = − ,   2 2 2

2 21 /с cη = − ,   ( )2 2 2
1 2 2 1 24( ) (1 ) ( 2 ) 0λ µ η η η λ µ η λη+ − + + + = . 

After short transformation we come to classic Rayleigh wave: 

2 2 2 2 2 2 2
1 2 24 1 / 1 / (2 / ) 0с c с c с c− − − − =  

Case of ideal inter-layer slipping  

In this case at 0k →  ( 0µ →ɶ ) treating εµ  as small parameter we get: 

2
2
1

4 ( ) ( 2 )
~

( 2 )

с

ε

µ λ µ λ µ ρη
λ µ µ

+ − +
+

 ,  
2 2

2
2 2

( 2 )( )
~

4 ( ) ( 2 )

с с

с

ελ µ ρ µ ρη
µ λ µ λ µ ρ

+ − −
+ − +

, 

2 2 2 2 2
1 2 1 2 2 2 2 1(3 2 ) 2( 2 ) (1 ) (1 ) 0λ µ η η λ µ η η η λη η λη+ − + + − + − =  

The graphs for dependence of dimentionless surface wave velocity 1/с c  on inter-layer 

connection coefficient k  is shown in Fig. 1b for various values of layer thickness parameter 

/ lε =0.5, 0.3, 0.1. as in previous case the wave number is 1 2 / lκ π= , where l is the length of 

harmonic surface wave. The asymptotic of classic Rayleigh root takes place for 

/ ( 2 ) 1.5 2.k λ µ+ > ÷  These graphs are very similar to the lower graphs in Fig. 1d (quasi-

transversal waves) for waves propagating along layers (α =900) and very close to them. For 

classic Rayleigh waves, as it is known, 2/ 0.9Rс c ≈ , the same relation is valid and in the case 

under consideration for ratio of velocity of surface waves to the velocity of quasi-tranversal 

waves. 

 

 

 

Fig. 2 
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Remark that the applicability boundary of proposed asymptotic theory is not defined exactly. 

The upper boundary for small parameter / lε =0.5 is issumed quite approximately. 

Nevertheless, for inter-layer connection coefficients starting from values / ( 2 ) 0.7k λ µ+ > , 

the calculations give very close meanings for propagation velocity of quasi-longitudinal, 

quasi-transversal and surface waves for the whole range of wave lengths / lε <0.5.  

It should be noted that proposed refined theory may be used for investigation of 

transformation seismic waves exiting to the day surface in rock massifs with regular parallel 

crack grids accounting slippage at contact boundaries. Also this theory may be useful for 

description of composite materials with additional soft sublayers between more rigid layers.



 
 

19 

Conclusion 

 

Using asymptotic averaging method the continuun theory of layered medium is built taking 

into account terms od second order accurasy regarding the small parameter of layer thickness. 

The linear slip contact condition is used to describe the relation between tangential 

displacement jumps and shear stresses.  The wave properties of proposed refined equations 

are studied, the dispersion relations are derived and the propagation of harmonic waves is 

investigated. The problem of surface Rayleigh like waves is solved.  

Authors are grateful to P.A.Yushkovsky and A.V.Ganshin for help in calculations.  The work 

is supported by the Russian Foundation of Basic Research (project № 15-08-02392-а). 
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