| mproved model of a layered medium with dip at the contact boundariest

N.G. Buragé, I.S. Nikitin?
! Ishlinski Institute for Problems in Mechanics RAS,
2 Institute of Computer Aided Design RAS
Moscow, Russia
Received 9 June 2015

Abstract

The equations for layered medium with slip at layeundaries are obtained using the
asymptotic method of homogenization and taking iatxount the second order terms
respectively the small parameter of layer thickneSdip condition defines the dependence
between tangential jumps of displacements andhbarsstresses at interlayer boundaries. The
derived equations introduce asymptotically complatiication of several models for layered
media based on the engineering approach or appatiimypotheses about the nature of
interlayer deformation. The proposed equations wed to investigate wave propagation
properties and dispersion relations for harmoniwesa The Rayleigh surface wave motion

along the elastic layered half-plane boundaryvsstigated.

The interest to the problem of propagation andsfiamation of waves in layered media is

associated with problems in seismology and engimgegeophysics. The seismicity is

observed in rocks with regular grid of cracks tleah be considered as layered media.

Classical studies of wave fields in such media sa@e based on assumption of continuity

of displacement fields. But for rather strong setsmctions the possibility of tangential

displacement jumps at the interlayer boundariesilghioe taken in to account. For long time

actions it needs to use the «averaged» modelsrudtisted continuum media because of

impossibility to trace deformations of each struatlayer.

In our study by using asymptotic method [1,2] tiveraged equations of layered medium

with slippage are derived. The second order tereiatively small parameter of layer
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thickness are taken in to account. The linear ®iption between tangential displacement
jumps at interlayer boundaries and shear stressasad. The zero order approximate
equations for such media has been derived eanlif3,4]. The proposed here new equations
represent complete generalization of layered medadels [5-6], which are based on

engineering approaches or on approximate hypothebesit layer deformations. Such

generalized models are required for static and miyn@roblems of rock media deformations

and for dynamic wave propagation problems in gesjsy It should be noted also that the
theory of layered media is suitable for descriptidrcomposite materials with soft (rubber)

sub-layers between major more rigid (metallic) faye

The properties of proposed refined system of eqnatiare studied. The propagation of
longitudinal, transversal and surface Rayleigh saire layered media is investigated in

refined settings.

1. Refined equations

Consider infinite layered medium using rectang@artesian system of coordinates, x,
and x,. The axisx, is perpendicular to the plane parallel layer iisegs. Let the interfaces

have coordinates =x® =s¢ (s=0,+1,+2,...), Where constant layer thicknegs<<l is a
small parameter. To say more exactly, the relafidh<<1 should be valid, herk is the size

of distributed load application range, for instaneeave length in the processes under
consideration. In such case all spatial values Ilshioel made dimensionless using this value
Assume that layer boundaries are always compressthe following conditions are valid:
053 <0, [U] = [0,4] = [04,] =0.

Here

o,,=kfu]

is linear slippage of Winkler type, ke=k=0(). Square brackets

[f]=f f

designate the jump of a valfiat inter-layer boundary. Such conditions

x40 x9-0

are valid approximately if between layers the soiblayers of thicknesd (0/ & <<1) with

small shear modulug; .are present. In this case we have:

_ _kalu] _ [u)
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Here [u ]/ 0 is shear deformation of soft sublayer. In thisecag =ko/& or wise versa

k=pu,el0. Itis possible to say thadt is inter-layer shear connection coefficient. Tagelrs

themselves are elastic isotropic and subjectedokEls law:

X z2x9: g, -pu, =0, g, =Cyu,

From now on, for compactness of the formulae daffeiation is denoted as:

f.=of /ox, f =of /ot

Here the elastic moduli tensor is:

Ciu =A8;04 + (0, 9; +6,0y)

According to the method of asymptotic averaging [18t's introduce «fast»
variable { = x,/&. According to [1] assume that, =u,(x,¢,t) is a function, which is
smooth regarding «slow» variablgs and continuous regarding «fast» variableexcluding

points £® =x® /¢, where it may have jumps of first kind. Besidesong & the

displacement is 1-periodiu]] =u, =0 . Accounting such choice of variables

U

£ 4172 §®-1/2

and the differentiation rule for complex functionthe system of equations for cell of
periodicityx® —-1/2< x, < x® +1/2, -1/2< &< 1/2 may be rewritten as
X, # x®, E20: g_ZCi3k3uk,{{ +£_1(Cijk3uk i€ +C, 3<Iukl{) +C|jk|uk j Py = 0
The contact conditions are
X=X, £=0: ™ sacdh £ T Cagly <0
[u] =0, [5_1Q3k3uk,.«f +C 3,1 =0, ‘9_1Cy3k3uk,{ +Cy3<Iukl = k*[uy]
The conditions of 1-periodicity are
[ull =u 0.

Here and farther greek indiceg (y) take values 1 and 2, latine indices take valyes, B.

vz Y |E—1/2 -

The displacements are represented as asymptags segarding small parameger

U =u@(x, &) +eu® (x )+ eUP (% )+ UK E L



Introduce the operation of «averaging$) for the function of «fast» variabfe which will

1/2
be odten used farther{f)= j fdé. Displacement approximations should satisfy the
-1/2

additional condition{u{”) =0 [1].
Substitute this representation into the theoryla$tecity equations. Equating to zero the term

with negative powers™ we get that zero approximatianf” is independent on the «fast»
variable & andu® =w (x,t). Equating to zero the term with negative power we get that
first approximation u® satisfies the equatiof,ul% =0. The resulting system of

differential equations is:
@) @ @)
CijkIWk,jI + Cijk3uk,j{ + (Ciaklukj +C, ax 5) £ +

(1) (2) (2) (3)
+£|:Cijk| Uy * (:ljk3uk,j{ + (Ci U T G a 5) 5:| +

rel [C”"' U'E'zi)' - Ciik3uk(,31)6 +(CaU) +C g 1Y) 5} +..= pw, +eou P+ e pu P+
A similar representation for stress tensor comptsisn
5, =00 + 200+ £ ..

(n+1)

(n) — (n)
rae g _Cu'kluk,l +C|jk3uk,£ .

All approximations for stresses are l1-periodic fioes of . In particular, the relation

(n+1)

08 =Cyu) +C 4 47 and conditiongc] =0, [[o]] =0 are valid. It is easy to see

that{ay ,

)=0.
Accounting the terms of definite order af, applying the averaging operatio(nf}and
excluding the dependence on «fast» variablewe get the model of averaged layered

medium with slippage of Winkler type.

Let’s derive the refined theory of second orden #his in the system of equations we keep
the terms of ordes”. Applying averaging operatie(n} for periodicity cell to the system of
equations we get the following:

@) (2) 2 G\ =
Ciia Wi i +Cijk3<uk,5>’j +‘9Cijk3<ukf>’j te Cljk3<uk g>'j = PWy



It is the final averaged system of equations fgetad medium with slippage. For complete

formulations it needs to find the functiorﬁeé’f}>(n=1,2,3), which patrticipate in the system.

Every functionu™ (x,,&,t) (n=1,2,3) is found from the appropriate task on «periodiciyl»
(-1/2<é<1/2) [1], which is formulated by equating to zero them of terms of definite

order "™ in asymptotic system of equations. Additional dtinds for these functions can be
received by reformulationg the contact inter-lagenditions for each function: conditions of
1-periodicity [[u™] =0 and condition@i(”)> =0. Let's formulate these three tasks for the
cell (-1/2<¢&<1/2).

1.1 Taskin cdll for n=1

At |&]<1/2: Cy U =0.

At =01 [Cya2] =0, [u’1=0, KUuPl=C 5w, +C, g

Additional conditions are: [[u™]] =0, <ui(1)> =0.

Dropping details, published in [7], write the sodut of task 1 on the piriodicity cell:

u =g, (f-signé/2), u’ =0, rme g, =-1,/(K+pu), 1,=pWw, +w,,).

The derivatives needed for averaging are:

W = @ - @\ = @\ =
U;e =0, U =9, <u3£>—0, <uy,{>_¢y'

1.2 Task on cell for n=2

At [ <1120 Cuw ; +Cgle +(Cggu] + Cra b o = oW

Averaging this differential equation and accountihgt <(Ci3k,u|£fﬂ +Ci3k3u,§2‘3){> =0 and that
the rest terms of this equation do not depend pwe get its simple consequence:

Coacicze = ~CraUa

At =00 [Cuu =4Caul] . [U71=0, KUl =Cpu U +Cpah?.

Additional conditions: [[u®]] =0, <ui‘2)> =0.

Dropping details (see in [7]), write the solutidintask 2 on periodicity cell:

UP =, (62 -Signé +1/6)12, uP =~1,(E* -signé +1/6) /2



Here ¢, =@,,, Ws=A¢;,1(A+2p)
Derivatives needed for averaging are:
u?) =, (EF1/2), u) =, (EF1/2), (U)=0, (uF})=0

Hence second approximations for displacementstarerd in averaged system of equations.

1.3 Task on cdll for n=3

. @) —_ @ _ (2) _ (2) @)
At |<(|<1/2- Casthcze = ~Cialicji ~ Crael'a ~ G s + AUy

At ¢=0: [Ci3k3u|£3,g] = —[C|3<IUI£21 ) [uég)] =0, k[ufxg)] = Cy3k| Ulﬁ) +Cy3k3u|§:?-

Additional conditions{[u®]] =0, (u®)=0

1.4 Solution of task 3

a) Solution for displacement componentsifery .

The elasticity moduli tensor is:

Gty = CpiaUsh = (A0,,05 + 10,50, + 10, 55)Ug)y = (A + L))y, + U
(Cyan +Coua)uh = ((A+ 108,05 + 2143, ) Uy = (A + iU, + 207

Task equation fof¢| <1/2 is:

Uyze = Uy = (A 10Uz, | 1= 20,725 = (A pa)uiggy |+ pul

£=0: [uP]=HuB+uf) =0, KuP] = u2+u+uf), [[u®]] =0, (u)=0.
The equation may be rewritten as

Uz = X, (£ -signé /2)

Herex, ==@,, —(A+)@s 5, [ U+ 2P, ;+ A+ p)Ws, [+ 0P, [ 1.

Integrating and accounting conditions for 0, we get [7]:

U = x, (&2 -signé) 1 2+ (Kx, + s, + s, ) | (K + ) 112

Finally the expression for averaged derivative is:

<uf,3}> = 'u(¢yﬁﬂ +(BA+21)pp 5, [ (At 2U)- 0P, /,U) I&+u)l12

6) Solution for displacement components for 3.

The elasticity moduli tensor is:



Cojalcy = CajaUpy = (A0y0p + O30y + 1040,,)Up’y = (A+ 1)Uy .

(Coa +CaxdUih =((A+3U)050, + (A + )5, July = 204 + 2u G + A+ p
Task equation fof¢| <1/ 2is:

U = =(A+ UGyl (A +20) = 08— A+ g, 1A+ 2u).

£=0: [ul ={u -AulJ/ (A2 =0, [uP] =0, [[uP]] =0, (uP)=0.
The equation may be rewritten as:

U = x; (£ -signé/ 2)

Herex, =(A+ s 5[ (A+2p)+ 2p5 5= A+ )Py 55| (At 211).

Integrating and accounting conditions §or O we get [7]:

US) = x(¢7 ~signé +1/6)/ 2, (uf) =0.

Finally the expressions for averaged derivatives ar

3 3 8
<U}(/3(> :1—12(kTILI/j)(¢y”8ﬂ F :ZIJ ¢ﬁ By p¢ynj <U§§> =0.

2. Variants of averaged system of equations

Now we can formulate the refined system of equatifor layered medium with slippage
(latine indices, j, k, | =1, 2, 3; greek indices, y=1,2):

Cy Wi +Cyjk3<u,§1}> +e'C Jk3<u|§?> = PW,

CsiaWi +C3].k3<u,£1}> +EZC3Ik3<u,f3g> = PWy,

Accounting the elastic moduli tensor the termshed system of equations are written as:

CyjkIWk,jI =4 +:u)Wk,ky T HUW, s C3jkIWk,j| =(A +:U)Wk,k3+luw3kk
Cyjk3<ulﬁl,§'>,,- = Cy1ﬂ3<u/(ilif> =HP, C3Jk3<u,£1§> = C31ﬁ3<u/(?1)§> = Hs s
Cpa(U) = (W) = 12(B ppa+ BA+ 20 5,01 A+ 2U)= B, 1) | o+ 1) 112

Caa{U2) , =(Ubk) , = 12 (4A+ 10 pos | A+ 210)= PP 1) 1+ 1) 112

Finally refined system of equations is:



(A+ )W, + LW, o + U, o+ E° 11 (¢ym+ BA+2U)ps 5, sl A+ 20)= PP 5 /ﬂ) [+ u)I12= pw,
(A+ K Woyo + MWy, + 11 5 + €11 (A + 1P o | A+ 210)= PR g 1 1) | (k+ 1) 1125 pwsy,
Remind thap, = -x(w, ,+w, )/ (k+4). In general equations the expressionsdprare not

substituted to avoid the unnecessary complexitipohulas. It is seen that regarding spatial

variables this is the system of forth order for digplacementsy, and it contains mixed time

derivatives.
The system of equations is simplified for the cageideal slipping contact between

layersk =0.
(A + L)W, + LW, o + UP, 5+ fzﬂ(¢y,ﬁﬁ3+ GA+2UNps g, 5 A+ 2U)= PP, /,U) 112= pw, ,
(A + E)Wy s+ Wy + i 5+ 1A+ 1P g | A+ 20)= B o 1 12) 112= v,

¢y = _(Wy,S + W3,y)

Separately we formulate plane (2D) dynamic systéegoations:

82#2

+pm(w 138 TW 3,3.1) =PW

ku ku e’ (A+p)
(A + 2/1)\/\/1,11"‘ (/‘ +kT’u] W3,13+ K+ 1 W35~ 3(k + ,LI)Z (A + 2#) (V\&,1133+ W3,3111)

ku ku e’ (A+y) ey’ _
(A+ 2:“)W3,33+[)| +kTﬂjW1,13+ K +,UW3’11_ Ak+u) A+ 2’u)(W1,1113+W3,1111) tp 126+ uy (W1,13+W 3,111) =PW g,

Quasi-static 2D system of equations is:

0

ky ky EW  (A+p)
A+ 2,u)vvlvll+(/1 + K+ ijglg"‘mwl,gg‘ 3k+u)f A+ zy)(\A,:I.,1133+ W3,311)

0

ky ky e (A+p)
(A+2p)W, 5+ (/] +leu] W1’13+kT,uW3’1l_ 3(k+uY (A+2u) (W1,1113+ W3,1111)

And finally 1D dynamic or quasi-static system ofuations for bending of layered massiv

(casen, =0, w, =w;,(x,,t)) takes the view:



2,,2

et (A+p) ku gu
Wy 00— W~ w
3kHpy (A+2u) M kg P e iy

am T OW g =0 (dynamics)

or

et (A+p) ku
2 Ws 11117
3(k+u)° (A+2u) K+ u

w,,,=0 (quasi-statics)

Formulas for stress tensor components are:

USO) = Cija W +Cijk3u|£l,z" USO) =AW, + (W + W)+ L(P 05+ 9,F,5)

00 = Coutd +Cui®, 0 =(AG 8+ (B, +,) ~ AW~ WS, 5+ ,5.9) (€11 2)

Here ¢, =0, ¢, =-pu(w,,+w, )/ (K+L), @,=@,5, WYs=A;,1(A+24).

Boundary conditions for loaded surface are:

o”m =R , oPm =0.

In some problems for definite orientations of boanydnormal vector the boundary condition
of first order converts into identity. In this casthe boundary condition of second order

should be useds{” [h, =0.

3. Wave properties of layered medium with slippage at inter-layer boundaries
3.1. Plane harmonic waves

Let's define the properties of harmonic waves pgapiag in arbitrary direction regarding

layer orientation at arbitrary inter-layer connenticoefficientk. 2D dynamic system of

egiuations for the medium under consideration is

2,,3
R e o

B £
k+,u 3,13+ k+IuW1,33 3(k+,u)2 (A + zﬂ)(mé.,ll33+w3,311])

+op—M—— + =
p124(+/j)2(W1,3s Wz,m) PW



ku ku e’ (A+y) ey’ _
(A+2ﬂ)W3,33+(/]+kTﬂ\JW113+ K+ W31~ 3(k+,u)2 0 +2’u)( 11113+W3,1111) W( st W 3,111)_:0W 8,

These equations may be rewritten as

(A + 20003y + AW, o+ Z(W 5t W) - 2UB (Wi w ) +peB (w sw ), = pow,

(/1+2/J)W333+/]W113+,U(W13+W3) € ,uﬁ( W, Fw 3)1’111+p52ﬁ (zW 5w ;,;n = PW g

Introduce the additional variables

U = Vvl,3 + W3,l

V=ju- gzluﬁlu,u"' pgzﬁzun

The the system of equations takes the following view
((/1 +2L)W, 1, — PWyy ) + AW, +V =0

AW, g5+ ((/] +2U)W; 55~ PW 5 ) +V =0

W, 5+ W3,1_U =0

= 52:82 (,u*u,ll + pu,tt) -V =0

Here introduced the following designations

- k

fi=p K213, B=p112, n=uglp

K+u' h= k+/,1 A= /1+2

We seek the solution of this system of equationdhasnonic waves propagating in the
direction n=(n,n,) with frequency w and wave numbek =xn=(k,,K;):

V = De | (KX +KgX3= M)

W, = Aei(K1X1+K3X3_fJ) W, = Bei(K1X1+K3X3—M) U =Ce j (KX +KgX3=ak)

Here k, =kn,, k,=kn,, [k|=«, |n|=1, «=2m/lis the wave number, is harmonic wave

length, ek =27(e /1), €°k? = 4772(£/|)2. The values/1 <<1 is a small parameter. In result

we get the system of homogeneous algebraic eqsation

10



(A +2u)8 + 13 = pa’) A+ (A + 1, )k k B=0
(A + 1)Kk A+ ((A + 20003 + p.k = pa?) B= 0
Herey, = 1+ &°B, (1. — pw’) . Condition of the solvability for this algebraigssem gives

the equation for propagation velocities of harmam&ves in the medium under consideration:

54_(“ He jzu He g AHED) (Uo) oo g
(A+2u) A+2u) (/l+2ﬂ)(/|+2U)

Hered? = pc® [ (A+2u)=c’/c?, c=wlk is the phase velocity of wave propagation in

layered medium,c =./(A+2u)/p and c,=,/ul p are velocities of elastic longitudinal
and transverse waves in a homogeneous elastic mediu

Let o (n, =sina) is the angle of wave propagation direction. Fems values ofa the

biquadratic equation has exact solution.

At a=0: ¢ =1 for quasi-longitudinal wave(2=\/ﬁ/\/(/1+2y)(1+£2/(2,82) for quasi-

transversal wave.

At a=ml4: =] +p+p+ex?Bui2)/J(A+2u)1+£k7B,) for quasi-longitudinal

wave, ¢, =./u/\[(A+2u) for quasi-transversal wave.

At a=7ml2: ¢ =1 for quasi-longitudinal wave,Z, = \/([1+52K2,6’2,u*)/\/(/1 +2u)(1+ %K °B,)
for quasi-transversal wave.

At arbitrary o the solution of this equation may be sought iruass] approximatiorn- £ as
{?=¢+{.e*+o(e?)

Zero approximatiory =Z02 is found from equation:

504_(“ f jfo“ B At W) G20 o
(A+2u) A+2u) (A+2u) A+ 2u)

Values(,?, which correspond to quasi-lingitudinal and quaaisversal waves in layered

medium, are:
o’ =0.5(1+ i1 /(A + u )£ D,)

Here

11



DO:J O+ o Ot (W=D o gy, (U=
(A+2up " (A+2u) A+ 2u) O+ 2u¥

The correction coefficient.” is:

{2 = BK*({,* —cos’ 27{ H Sir?a—Zozj( 2702_( 4 P D

(A+2p) (A +2u)

Approximate values of phase velocities with accyrat are

—~ 2.2 2 _ 2 M - 2
Z~Zo(1ikfﬁz(io cos?z:{zo T snrfaj (@, Do]

From these formulas it is seen that the velocitiebarmonic waves have small dispertion
(~ k*¢?) and depend on the wave direction paraneter

Now investigate the limit cases of these formulag a- 0 (4, — fr). Firstly it is the limit
case of ideal inter-layer contact (case of homogeselastic mediumk — o (7 - ), and
secondly it is the limit case of ideal inter-lagippingk — 0 (& - 0).

Quasi-longitudinal waves (sign plus in formulas fof, and {).

In this case fos - 0: { - (.

Fork - «: ¢, -1 (c - ¢), (elastic longitudinal wave in isotropic medium).

Fork - 0 : {,* - 0.5(1+D,)

Here

5 :J(Mmz L2000+

1

2

sar+—H
(A+2uy  (A+2u) (A +2uy

Fora=0,7/2: {, - 1,c - ¢, (waves along and cross layers).

Fora=ml4: {, - J(/l +u) 1 (A+2u), (waves propagated under an angle to the layer

boundary direction, minimal propagation velocity).

Quasi-transversal waves (sign minus in formulas fof,, and{ ).
In this case fore - 0: { - {,.
Fork - »: { - ¢,/c, (¢ - c,), (elastic transversal wave in isoytropic medium).

Fork » 0: {; - 0.5(1-D,).

12



Fora=0,m/2: {, - 0, ¢ - 0, (waves along and cross layers).

Fora=ml4 : {, - c,/c,;, ¢ - c,, (Waves propagated under an angle to the layemdaoy
direction, maximal propagation velocity).

The dependence of propagation velocities for quasgitudinal anf quasi-transversal waves
on coefficients of inter-layer connectidn are shown in Fig. 1. Upper graphs correspond to
guasi-longitudinal waves, lower graphs correspondquiasi-transversal waves at various
values of small parameter/| =0.5, 0.3, 0.1. Dimensionless elastic moduli aréndd as
Al(A+2u)=pul(A+2u)=1/3.

Above each graph the value of wave direction amgted, 3¢, 6¢°, 9¢ is shown. Fora =0,

90° the solutions are described by axact formulasrgateove and shown in Fig. 1a and 1d.

For other values ofa the solution of biquadratic equation faf =c/c, is calculated

numerically and shown in Fig. 1b and 1c.

0 =0 0 a=1/6
| e ——— 1.0 R —
. Y L
| ;7
U.fﬁ; 0.8
0.6 . 0.6 S —
: -’,_____..---‘ {'-
{],45;,,-’ 0.4
0.2t1 0.2
("
00'! T . . S 0.0
00 05 10 15 20 25 3.0 i 0.0 05 1.0 15 20 25 3.0
—g/=05 ----g/l=03 - sil=101 —gll=05 ----g/l=03 - s/i=01
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< w= a3 40 a=1/2
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# |-.-"':'-:r--.

0.4 04l .

0.2 02

0.0 U.D: ]
0.0 05 10 15 20 25 30 r 00 05 1.0 1.5 20 25 3.0 ;
gll=05 ----g/I=03 - gll=01 — gl=05 ----g/1=03 - gll=01

Fig. 1

From these graphs the level of plane wave dispertan be seen (for small values of the
coefficient of inter-layer connection) for variousave directions. The dependence of
dispertion on the layer thickness parametdl can also be seen there. It is possible to
conclude that the dispertion plays role only fomentionless coeffitients of inter-layer

connectionk / (A +24)<0.7. It is mostly significant for directiong =9¢° (along layers) of

quasi-transversal waves (see Fig. 1d, lower graphs)

3.2. Surface Rayleigh waves

Consider surface waves on the boundary of layewmdtipfane —co <x, <0, —co<x, <o

(plane task). The system of equations for displacgésnef layered medium with slippage at

inter-layer boundaries is written earlier

((/1 +20)W, ,owm) +AW, +V =0, Aw,+ ((/] + 2U)W, 5~ Wy, ) +V =0,
W, +w,,—U =0, u-¢&°B,(uu,+pu,)-V=0

Boundary conditions at =0

Oy = (A+20)W, ,+ AW, =0, 5= p(w, ;+w,) =0

At x; - -0 W -0, w - 0.

Represent the solutions of this task as surfaceywax0

14



w, = Ag’eg ) gy, = Beleg Mt
Substituting this representation in to the systémifferential equations we get the algebraic

homogeneous system of equations

(,u‘gy2 —KfAl) A+(A+u)yikB=0

~KZ(A+ 1)y A+((A + 20y - k2D, )ikB=0

Here the following designations are used

U =A+EBKA,, D =1 —pc, D =A+2u-pc?, N, =N, +BKAN,, D,=[-pc,
Phase velocity of surface wave és= w/ k,. The solvability condition gives the biquadratic

equation foy
A+ 2ty =2y (D + A+ 200D, = A+ 1, ¥ )+ KA, = O

From this equation we find two positive solutighs> 0

o« {(%Ak A+ 2000, (4 1, F ) 218, + A+ 2008, - 0+ 4, ) - 40+ 2 WeA1AZs}
ha = 2(A+ 21,

Then the solutions of task are
w, = eV1X3ei(K1X1‘M) + Azeyzxsei (KX—at)
W3 - Bleylxgei(/(lxl—wt) + Bzeyzx3ei(/(lxl—wt)

RCEIATALY
A +2u -k )

Whereik,B, , =k

Substituting these solution into boundary condgiahx, =0 get the system of equations
VA YA +IK B +ikB,=0
—AKA AR A+ (A +2u)yik B+ (A+2u)yik B ,= 0

From this system of equations the amplitu@sind B, may be excluded. Then we have two

homogeneous equations regarding amplitudeandA, . For simplification of expressions in
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stead ofy,, >0 introduce valuesy, , from relations, , =y, ,/ k,. These values are defined

by formulas

2
LD, (A 20D, = (A+ 1) iJ(ugAzf FA+ 2NN, - A+, P ) - 40+ A WA,
200+ 21 ),

Homogeneous system of equations for amplitudleand A, is

(A+u,) (A+u) _
’71{14' ((/] +2/,1)/712 —AZS)JAL +’72{1+ ((/] n 2/1)722 —AZE)JAZ =0

,71,2

A+20Q+ a0t [ Araarun? ),
s G

For solvability the determinant of this system dddae equal to zero. It gives the equation for

unknown phase velocity of surface wave w/ k;
A+ i, =n,@+n A+ 2uy 2+ An ) -

_AZS {’71(0' +24),° +)I)+/72(1+/722)( N+ 2y)712+,1)} -0

Here we denotdu, = -4, . Again investigate the limit cases of this formale — 0

(4. - f). In these cases

[, + (42008, ~ 1+ B £, + 1+ 2008, - A+ £Y) - 40+ )0,
20+ 2

2 _
’71,2 -

The equation for surface wave propagation velosity i

4(A +,U)I71I722 _/72(1+’722)( A+ 2:”)712 +/]’722) -

_(kTﬂu){nl((A +2uy1? +A) 4,402+ 2uyf+A)} = 0

Case of ideal contact (ideal elastic medium)

Inthiscase ak - o ({1 - u):
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nf=1=c* ek, nf =1=c*1c], A+ uypn, = Wnt) A+ 2u)’ +An)) = 0.

After short transformation we come to classic Raylevave:

4J1-c? I3 1-c? Ic2 - (2-¢? Ie2)?= @
Case of ideal inter-layer slipping

In this case ak — 0 (& - 0) treating i, as small parameter we get:

7~ AuA+p)=-@A+2u)pc® -, (A+2u-pt)(y, ~ pe’).
' (A+2u), L Au(A+ )~ (A + 2u)pc?

(3/1 + 2/1)’71/722 - 2(/1 + 2/1)712/72 (1+/722 )_/]/72 (1+’722 )2_/“71: C

The graphs for dependence of dimentionless surfageewelocity c/c, on inter-layer
connection coefficienk is shown in Fig. 1b for various values of layeckiness parameter
£/1=0.5, 0.3, 0.1. as in previous case the wave number=2sr/l, wherel is the length of

harmonic surface wave. The asymptotic of classic |dkgly root takes place for
k/(A+2u)>1.5+ 2. These graphs are very similar to the lower graphBig. 1d (quasi-
transversal waves) for waves propagating alongréage =90°) and very close to them. For
classic Rayleigh waves, as it is knowR,/ c, =0.9, the same relation is valid and in the case
under consideration for ratio of velocity of sugawaves to the velocity of quasi-tranversal

waves.

e ————
S
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Remark that the applicability boundary of propoasgmptotic theory is not defined exactly.
The upper boundary for small parameter/| =0.5 is issumed quite approximately.

Nevertheless, for inter-layer connection coeffitsestarting from valuek/ (A +2u)> 0.7,

the calculations give very close meanings for pgagian velocity of quasi-longitudinal,
quasi-transversal and surface waves for the wlaslge of wave lengths /| <0.5.

It should be noted that proposed refined theory niey used for investigation of
transformation seismic waves exiting to the dayasar in rock massifs with regular parallel
crack grids accounting slippage at contact bourdarhlso this theory may be useful for
description of composite materials with additioeaft sublayers between more rigid layers.
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Conclusion

Using asymptotic averaging method the continuuorhef layered medium is built taking
into account terms od second order accurasy regatbe small parameter of layer thickness.
The linear slip contact condition is used to describe relation between tangential
displacement jumps and shear stresses. The waperpes of proposed refined equations
are studied, the dispersion relations are derivetl the propagation of harmonic waves is
investigated. The problem of surface Rayleigh lileeves is solved.

Authors are grateful to P.A.Yushkovsky and A.V.G@andor help in calculations. The work
is supported by the Russian Foundation of Basie&ebh (projecNe 15-08-02392).
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