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CALCULATION OF STRESS-STRAIN STATE OF ELASTIC DISC 
OF VARIABLE THICKNESS UNDER VIBRATION OF BLADES 

 
The aim of the study is to calculate the stress-strain state of an elastic disc of variable 
thickness due to vibration of blades. For this purpose, the numerical-analytic method is 
developed for solving three-dimensional equations of elasticity theory. The solution is 
represented by a Fourier series and expansion coefficients are found from the boundary 
value problems for systems of ordinary differential equations along the radial 
coordinate. The results can be used to calculate the fatigue failure of the turbomachine 
disks. 
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Introduction 

In the paper, we calculate stress-strain state of gas turbine compressor disc forced by 

oscillations of the blades in order to study processes of Very High Cycle Fatigue 

(VHCF) [1]. The frequency of these oscillations is of the order of frequency of disk 

rotation, or a multiple of it. The development of VHCF process up to the number of 

cycles N > 108 may cause appearance of failure in the contact area between blades and 

the outer rim of the disc. 

In [2,3] the stress-strain state of gas turbine compressor disc has already been calculated 

for Low Cycle Fatigue (LCF, N~105) processes (flight cycles: take off – flight - 

landing) taking into account variable thickness of disk, centrifugal and aerodynamic 

loading as well as contact interaction of disk and blades. Aerodynamic pressures were 

calculated on the basis of known “isolated profile” analytical solutions for flow around 

plates with flow separation.  

Currently there is a growing interest to the study of VHCF fracture because it becomes 

clear that even low amplitude vibration loads acting during long time (years) may cause 

the structural damage. The vibration stress amplitudes may be much less than low cycle 

fatigue limits and even less than yield limits. So according to classical view such weak 

vibrations should not be the reason of structural failure. Nevertheless the fatigue 

fracture happens even if vibrated structure works within elasticity limits up to failure 

zones appearance [1]. Therefore for fatigue life duration predictions it needs to calculate 

the structural stress-strain state on the basis of theory of elasticity.  
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It should be noted that the main disc loading is carried out in flight cycles under 

centrifugal and aerodynamic forces. This power background is superimposed by 

vibration loading due to the torsional vibration of the blades. In the adopted statement of 

the problem we do not consider the vibration reasons such as the effect of pressure 

fluctuations, the excitation of own frequency vibrations of the blades, the transitional 

regimes of the engine and so on, in stead we assume that the vibration parameters are 

known in advance. Real observational data on the amplitudes and frequencies of 

vibrations for disks are given in [1]. 

Next, we calculate stress-strain state of the disk of variable thickness due to the 

torsional vibrations of the blades. By the linearity of the problem this solution can be 

summed with known solution for LCF stress-strain state [2]. The total stress-strain 

states due to flight cycles and vibrations for the two extreme positions of the blade 

during torsional vibration are the boundaries of cyclic process and used for further 

assessment of fatigue life. 

1. The approximate system of equations for the disc of variable thickness under 

periodic loads on the outer rim. 

To determine the stress-strain state of this disk are solved three-dimensional equations 

of elasticity theory [2]. External loads on the outer rim of the disc are periodic in time 

and along the angular coordinate. These loads simulate the action of the torsional 

vibration of the blades and agreed with them in amplitude. Components of stress and 

strain are represented by Fourier series along the thickness and along the circumferential 

direction. The Fourier coefficients along the radial coordinate are obtained from system 

of ordinary differential equations. 

In a cylindrical coordinate system r ,ϑ , z , the annular disc a r b≤ ≤  has a variable 

thickness )(2 rh , the thickness coordinate varies ( ) ( )h r z h r− ≤ ≤ . The system of 

equations of the dynamic theory of elasticity [4] for a disk in a cylindrical coordinate 

system is: 
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Stresses and deformations are subjected to Hooke’s law: 
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Kinematic relations are: 
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Here λ , µ  are Lame’s elastic moduli, ρ is the material density. Farther we use 

dimensionless stresses measured in 2λ µ+ , and dimensionless coordinates measured in 

internal rim radius а. 

Boundary conditions at free surfaces at  ( )z h r= ±  are: 

0rz rrhσ σ′− = ,          0z rhϑ ϑσ σ′− = ,           0zz rzhσ σ′− =  

Due to periodicity of loading along ϑ  the displacements are sought as Fourier series: 
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Relevant representations for stresses are: 
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For brevity, the index n is omitted for all coefficients included under the sign of the 

sum. These coefficients σ, τ , p , u , v ,w are new (auxiliary) unknown functions of 

radial coordinate r .  
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We investigate stationary vibrations of the disc. All (additional to the stress-strain state 

of flight cycles) components of stresses, deformations and displacements vary in time 

according to harmonic law, for instance, for displacements as i tueω , i tveω , i tweω . 

Substitute expressions for displacements and stresses in to equations of the theory of 

elasticity and equating terms of equal powers of z until z3,  as a result we obtain 

ordinary differential equations for the auxiliary variables at different n=0,1,2…: 
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We emphasize that this system of equations is solved separately for each harmonic n. 

All other stress components 
3 3 3 3 2,4 2,4, , , , , , ,s s p Tσ τΣ Σ  and displacement components 

3 3 2,4, ,u v w  are defined using auxiliary unknown functions σ, τ , p , u , v , w after the 

solution of the written system of ordinary differential equations. To obtain a closed 

boundary value problem for the auxiliary functions for each value of n, in the boundary 

conditions at  ( )z h r= ±  we had neglected members of small order in h such as:  

2 2 2
3 3h h hσ′∆Σ = − Σ ,   2

3 4T h h h Tτ′∆ = − ,   2
3 4p h h h pσ′∆ = − . Direct numerical 

calculations confirm the smallness of the discarded terms. 

 
2. The boundary conditions for the torsional vibration and the solution of problem 
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We consider a blade as a plate of rectangular cross-section and width d . Number of 

blades is 
0N . Action of blade on disc due to blade torsion we represent by  distributed 

tangential load at the external rim of disc. Outside of contact zones of disc and blades 

these surface loads are equal to zero. 

Boundary conditions at radial boundaries r a=  and r b=  with periodic (along angular 

coordinate) loads are: 

r a= :       0u = ,    0v = ,   0w =            

r b= :      0σ = ,  ( )bτ τ ϑ= ,  ( )bp p ϑ=    

where  ( )bτ ϑ  and  ( )bp ϑ  known functions, defined below. These boundary conditions 

relate to fixed internal rim of the disc (r=a), and to loaded external rim of the disc (r=b). 

Known functions of right hand sides relate to stresses at root cross-sections of blades.  

To calculate the values of ( )bτ ϑ  and ( )bp ϑ   the known solution for the torsion of plate 

of rectangular cross section [5] is used. In Fig. 1 the distribution of shear stresses on 

rectangular root section of the plate for torsional twist sweatshopγ  [6]. 

 

       Fig 1.   Distribution of shear stresses at blade root cross section. 

 

Maximal shear stress rzτ   is in point В: 1
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For d/h<<1  we have 0.8k ≈ . Hence,  B dτ µγ= ,   0.8A Bτ τ= . 
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Exact solution for shear stresses at root cross section is represented by rather 

complicated expression [5]. Instead we use simplified approximation. Simplified 

dependencies are linear along one coordinate and quadratic along another coordinate 

(see Fig. 1): 
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These relations are taken as approximate values of boundary shear stresses rzτ  and rxτ . 

Using substitution /x bϑ = , ϑ δ≤ , / (2 )d bδ = <<1 , the right hand pert functions of the  

boundary conditions at r b=  can be written as: 
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Periodic boundary loads can be represented by Fourier series (one period 

0 0/ /N Nπ ϑ π− < < ): 
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By analogy axial shear stresses also are represented by Fourier series: 
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So for different 0n kN=  , k=0,1,2… it needs to solve the system of equations (1) with 

boundary values ( )kτ  and ( )kp  at r b= . 

The system of ordinary differential equations (1) with boundary conditions (2) and (3) 

are solved numerically by using finite difference implicit scheme [7].  

After that stress components are defined by summation of Fourier series for  0n kN= , 

k=0,1,2…  The number of Fourier series terms for practical convergence does not 

exceed 20. 
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3. Numerical results.     

The shape of titanium disk cross section is shown in Fig. 2. The initial data are: 

a =0.05m, b = 0.4m, d = 0.01m, γ =0.1 rad/m, ω = 628 1/s, λ = 78 GPa,  µ = 44 GPa,  

ρ = 4370 kg/m3. 

 

Fig. 2. Cross section of the disk. 

 

In Fig. 3 the radial distributions of stress components are shown for cross section  

0.5ϑ =  (under the blade). The stresses decay rapidly with distance from the outer rim 

of the disc. 

 

 
 

Fig. 3.  Radial distributions  of stresses under the blade. 
 
 

The Fig. 3 shows that maximal values of stress components at the outer rim of the disk  

are equal approximately 30-50 MPa, hence, the scope of stresses per torsion blade cycle 

is 60-100 MPa. 

Earlier in [2] solved the problem about stress-strain state of the same disk for flight 

cycles under centrifugal forces in disks and periodic surface loading at the outer rim of 

the disc due to centrifugal and aerodynamics loads in blades.  

For study of very high cycle fatigue (VHCF) due to vibrations it needs to impose the 

stress-strain state calculated here for the torsional vibrations of the blades with the signs 
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+ and - on the main stress-strain state associated with the flight loading cycles (LCF - 

low cycle fatigue). 

The radial distributions of total stress components for the extreme positions in the cycle 

of torsional vibrations of the blades in the vicinity of the outer disk rim are shown 

below in Fig. 4-5 (a-b).  

 

 
а)                                                                           б) 

 
Fig. 4.  The total radial stress distribution. 

 
 

 
а)                                                                                 б) 

 
Fig. 5. The total radial stress distribution. 

 
 
The difference between the values of the stresses on the left (a) and right (b) hand 

graphs in these figures represents the stress variation range in the high frequency cycle 

associated with the torsional vibrations of the blades.  In future the data obtained by the 

proposed method are planned to be used in estimation of the durability of turbomachine 

disks. 

 
Conclusions 
A method is developed for calculating three-dimensional stress-strain state of elastic 

disks of variable thickness under the action of cyclic loads due to the torsional vibration 

of the blades in the gas turbine compressor.  
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Approximate representation of solutions is accepted for its dependence on the 

coordinates along the thickness of the disk and in the circumferential direction. For 

dependent on radial coordinate coefficients the system of ODE is derived and boundary 

value problems are formulated and solved  by using an implicit finite difference scheme. 

Calculated stress-strain state due to blade vibrations superimposed on to the known 

stress-strain state of the disks due to centrifugal and aerodynamic loads. Total stress-

strain state is ready for use in estimations of durability gas turbine disks. 
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